
©2016 Bes-Tech, Inc. All rights reserved.

Digi-SFT

User’s Guide

©2016 Bes-Tech, Inc. All rights reserved.

This document and the information contained within are the property of Bes-Tech, Inc. and delivered on
the express condition that it is not to be disclosed, reproduced in whole or in part, or used for
manufacturing purposes by anyone other than Bes-Tech, Inc. without its written consent. No right is
granted to disclose or so use any information contained in said document.

Bes-Tech reserves the right to change or modify the information or product described without prior
notice and without incurring any liability.

Use of the software is provided under a software license agreement. Unauthorized use of the software
or related materials discussed in this manual can result in civil damages and criminal penalties. The
terms of this license are included with the software installation.

Digi-SFT™ is a trademark of Bes-Tech, Inc.

All brand names, trademarks, and registered trademarks are the property of their respective owners.

Last updated: 12/14/2016

Bes-Tech, Inc.

4640 S 59th Street

Omaha, NE 68117

Phone: (402) 502-2340

Fax: (402) 502-2283

www.bes-tech.net

Page | i

Table of Contents

1 Introduction .. 8

1.1 Important Things to Know before Using this Guide ... 8

1.2 More Information ... 8

2 Using the User Interface ... 9

2.1 Login .. 9

2.2 Menus and Toolbars ... 10

2.3 Tree Display ... 11

2.3.1 Pop-Up Menu (right click) ... 11

2.4 Graphics Viewer .. 12

2.4.1 File Menu .. 13

2.4.2 Toolbar .. 14

2.4.3 Auto Refresh ... 14

2.4.4 User actions... 14

2.5 Grid Display ... 14

2.5.1 Menu ... 14

2.5.2 Columns .. 15

2.5.3 Acronym .. 15

2.5.4 Grid Options .. 15

2.5.5 Search/Filter .. 17

2.5.6 Views ... 18

2.5.7 Enable Auto Refresh .. 18

2.5.8 Context Sensitive Pop-Up Menu (right click) .. 18

3 Managing Objects ... 21

3.1 Create, Create Batch I/O, Create Similar, Delete .. 21

3.2 Shared Object Definition ... 22

3.2.1 Acronym .. 23

3.2.2 Type ... 23

3.2.3 Description .. 23

3.2.4 Display Priority .. 23

3.2.5 Display Sequence .. 23

3.2.6 Display Format .. 23

3.3 Alarms ... 23

3.3.1 View/Modify Object Definition ... 23

3.4 Control Blocks ... 25

Page | ii

3.4.1 View/Modify Object Definition ... 25

3.4.2 View/Modify Field Information ... 28

3.5 Graphics .. 30

3.5.1 View/Modify Object Definition ... 30

3.5.2 View/Modify Field Information (Not Applicable) ... 31

3.6 Hardware .. 31

3.6.1 View/Modify Object Definition ... 31

3.6.2 View/Modify Field Information ... 34

3.7 Inputs/Outputs .. 36

3.7.1 Shared attributes .. 36

3.7.2 Analog Input .. 37

3.7.3 Analog Output ... 40

3.7.4 Digital Input ... 44

3.7.5 Digital Output .. 47

3.8 Loops ... 49

3.8.1 View/Modify Object Definition ... 50

3.8.2 View/Modify Field Information ... 53

3.9 History ... 56

3.9.1 View/Modify Object Definition ... 56

3.9.2 View/Modify Field Information (Not Applicable) ... 58

3.10 Schedules .. 58

3.10.1 Alarm Schedule (Not supported) .. 58

3.10.2 Generic Schedule .. 58

3.11 Users ... 61

3.11.1 View/Modify Object Definition ... 61

3.11.2 View/Modify Field Information (Not Applicable) ... 63

3.12 More about Lock and Key ... 63

4 Distributed Control Language Programming .. 64

4.1 Introduction .. 64

4.1.1 Control Block States .. 66

4.1.2 Control Block Status .. 69

4.1.3 Font Conventions .. 71

4.1.4 Source Code Comments .. 71

4.2 Variables.. 71

4.2.1 Variable Names ... 72

Page | iii

4.2.2 Variable Scope ... 72

4.2.3 Primitive Variable Types ... 72

4.2.4 Object Variable Types ... 73

4.2.5 Variable Declaration .. 73

4.2.6 Arrays .. 76

4.2.7 External Variables ... 77

4.2.8 Input/Output Variables ... 79

4.2.9 Object Variable Methods .. 80

4.3 Constants and Literals ... 90

4.3.1 Enumerated Constants ... 90

4.3.2 Number Literals ... 91

4.3.3 String Literals .. 91

4.4 Operators .. 91

4.4.1 Arithmetic Operators .. 91

4.4.2 Relational Operators ... 92

4.4.3 Logical Operators .. 92

4.4.4 Assignment Operator .. 92

4.4.5 Operator Precedence .. 92

4.5 Expressions .. 93

4.5.1 Arithmetic Expressions .. 93

4.5.2 Logical Expressions .. 94

4.5.3 Time Expressions ... 94

4.5.4 Date Expressions ... 95

4.5.5 Time Range .. 95

4.5.6 Date Range .. 96

4.6 Statements .. 96

4.6.1 Assignment Statement .. 96

4.6.2 Function or Object Method Call .. 96

4.6.3 If-else Statement ... 97

4.6.4 for Statement .. 97

4.6.5 while and do-while Statement .. 98

4.6.6 switch-case Statement .. 98

4.6.7 stop Statement.. 99

4.6.8 break Statement ... 100

4.6.9 continue Statement .. 100

Page | iv

4.6.10 return Statement .. 100

4.7 User Defined Functions ... 101

4.7.1 Local Function Variables ... 102

4.7.2 Before Calling Functions ... 102

4.7.3 Function Parameter Passing ... 103

4.8 Library Functions ... 105

4.8.1 Math Functions ... 105

4.8.2 Flow Control Functions ... 106

4.8.3 Status Functions .. 106

4.8.4 Time and Data Functions .. 107

4.8.5 Reporting Functions .. 108

4.8.6 Array Functions ... 108

4.9 Compiler Directives ... 108

4.9.1 #include ... 108

4.10 Control Block Structure ... 109

4.10.1 Elements of a Control Block .. 109

4.11 DCL Editor.. 111

4.11.1 Menu ... 112

4.11.2 Tool Bar ... 116

4.11.3 Pop-Up Menu .. 116

4.12 Schedule Editor ... 122

4.12.1 Menu ... 123

4.12.2 Calendar Pop-Up menu ... 126

4.12.3 Day Type Pop-Up Menu .. 127

4.12.4 Status Pane.. 128

4.12.5 Transition Time Pane .. 128

5 Using the Graphics Editor (Admin Only) ... 128

5.1 Introduction .. 128

5.1.1 Requirements .. 129

5.1.2 Additional Documentation .. 129

5.2 Setup ... 129

5.2.1 Mapping a Network Drive ... 129

5.2.2 Loading Prototypes ... 130

5.3 File Management .. 130

5.3.1 Open .. 130

Page | v

5.3.2 Save ... 130

5.4 Prototypes ... 131

5.4.1 Connecting a prototype to an object .. 131

6 Alarm Manager ... 131

6.1 Defining Alarms ... 131

6.2 Viewing Alarms ... 132

6.3 Acknowledging Alarms .. 133

6.4 Get Archived Data ... 135

7 Trend Manager.. 135

7.1 Trend Plot .. 135

7.1.1 Data Sources ... 137

7.1.2 Settings .. 139

7.1.3 Window ... 143

7.1.4 Pop-up Menu in the Trend Plot window ... 143

7.2 Real Time Plot ... 148

7.2.1 Data Sources ... 148

7.2.2 Settings .. 149

7.2.3 Window ... 152

7.3 History Plot .. 152

7.3.1 Data Sources ... 153

7.3.2 Settings .. 154

7.3.3 Window ... 156

8 History ... 156

8.1 Get Archive Data ... 156

8.2 Save Multiple Histories ... 157

9 Text Messaging ... 157

9.1 Refresh User List and Select User ... 158

9.2 Type Message ... 158

9.3 Send Message ... 158

9.4 Read Message ... 158

10 Access Control (Admin Only) .. 158

10.1 User Groups .. 159

10.1.1 Group Name .. 159

10.1.2 Group Description ... 160

10.1.3 Acronym .. 160

Page | vi

10.1.4 Group Permission .. 160

10.2 Administrator .. 161

11 Check Dependencies ... 161

12 Batch Process Commands ... 162

12.1 Set Selected HW Online .. 163

12.2 Set Selected HW Offline .. 163

12.3 Initialize Selected Controllers ... 163

12.4 Reset Selected Controllers .. 163

12.5 Compile Control Blocks (Admin Only) ... 164

13 Settings .. 164

13.1 Style ... 165

13.2 Logging Level ... 165

13.3 Language ... 166

13.4 Default Graphic ... 167

13.5 VPN Client ... 167

14 Appendix ... 169

14.1 DCL Keywords ... 169

14.2 DCL Variable Usage Summary ... 170

14.3 DCL EMCS Constants ... 171

14.3.1 Control Block and LOOP State ... 171

14.3.2 Lock/Key .. 171

14.3.3 Report Severity.. 171

14.3.4 Status .. 172

14.3.5 Undefined Primitives... 173

14.3.6 User Settable Status .. 174

14.4 DCL Coding Standards ... 175

14.4.1 Introduction .. 175

14.4.2 Basic Principals .. 175

14.4.3 Source Files ... 176

14.4.4 Commenting .. 177

14.4.5 Variable and Function Naming Conventions... 178

14.4.6 Code Layout .. 179

14.5 Example DCL Code .. 180

14.5.1 Time Scheduler.. 180

15 Glossary ... 182

Page | vii

Index.. 185

Page | 8

1 Introduction

Digi-SFT is a supervisory control and data acquisition (SCADA) software that is a subsystem of the
energy management and control system (EMCS). The SCADA software is used to manage building
systems for the purpose of providing occupant comfort and reliable, energy efficient facilities.

With this software, the user can monitor and control the EMCS over an internet connection. A
graphical view of the system displays real-time data and allows the user to modify the system
operation. A table view of the system compliments the graphics with options to search the
database. Custom algorithms can be written in the Distributed Control Language (DCL) and
downloaded to execute on the field computers. A scheduling feature is provided to schedule when
the equipment is depowered and the facilities are unoccupied.

The alarm management features include the ability to define, view, and acknowledge alarms.
Custom algorithms can be created to trigger an alarm that is annunciated to the desktop of
specified individuals or via email or text message.

Metering and performance system data is saved and can be easily reviewed for sensors, controllers,
and equipment connected to the system. The operational data can be viewed in real-time in plots
or on the graphical display. The interface to database is seamless from a users’ perspective.
Database replication is used for robust system operations when part of the network is unavailable.
When the network is available again, the system will automatically synchronize the replicas to
ensure the field computer contains all of the updated information in the server.

The security features include operation over an encrypted secure sockets layer, access control with
various levels of authority to the system, and a log of system activity. The system utilizes 128-bit
SSL protocol for initial client login; SSH secure tunnels for all other connections. The field
computers communicate with the control devices over RS-485 serial communication.

1.1 Important Things to Know before Using this Guide

This user’s guide is written with the expectation that the user has a general knowledge of the
basic principles of building automation and HVAC systems and familiarity with Windows
operating system. Certain advanced features are intended for use by a facility engineer or
system administrator. For those features, advanced knowledge of the system and computers is
expected.

Any innovative technologies provided by Digi-SFT will be thoroughly described so that you know
how to use the technology and the purpose for applying the feature.

The base system is supplied with some recommended conventions so that it can be quickly and
easily deployed in your facilities. This tool allows you the flexibility to establish your own
conventions that meet your specific needs. These tools are described in this guide where
appropriate.

1.2 More Information

This guide covers all of the features of Digi-SFT. For additional assistance on how to use the
tool, please refer to the on-line help provided with Digi-SFT.

The tutorial explains how to use Digi-SFT for typical daily system operation.

The installation guide provides details for installing the system.

The quick start guide provides basic operation examples.

Page | 9

See the glossary in this document for the definition of terms.

2 Using the User Interface

2.1 Login

The login window will pop up after software started. Enter the assigned username and password
and click “LOG IN”

After user successfully logged in, background color will turn to white and login window
disappeared.

Page | 10

2.2 Menus and Toolbars

The user interface includes menus and toolbars that enable user to quickly find and execute
commands. The pull-down menus are shown below.

Figure 1 - Session Menu

Page | 11

Figure 2 - Forms Menu

Figure 3 - Window Menu

In addition to “Cascade” and “Close All”, the Window pull-down menu lists all of the open
windows. When you select a window from the list, it will bring it to the top and make it active.

The toolbar includes the most commonly used commands. Figure 4 illustrates the commands
that appear on the toolbar. Some are available only when your account at admin level.

Figure 4 - Toolbar

2.3 Tree Display

The tree display provides a hierarchical view of the objects in the system.

2.3.1 Pop-Up Menu (right click)

The commands available from the pop-up menu on the tree display are batch commands.
When multiple objects are selected, the command is performed on each object, one at a
time.

 Login

 Settings

 Update Profiles

 Print

 Grid Display

 Tree Display(Admin Only)

 DCL Editor

 Graphics Viewer

 Graphics Composer(Admin Only)
 Archive Data

 Alarms

 Messaging

 Groups(Admin Only)

Page | 12

2.3.1.1 Compile Control Block(s) (Admin Only)

You may compile control blocks by first selecting one or more control blocks and then
selecting “compile control block(s)” command from the pop-up menu. The control block
is compiled to binary stack code, called s-code. If successful, it will download and run on
the appropriate hardware platform.

Control blocks are compiled one at a time. Their compilation status appears in a batch
process results window.

An error window appears if no control blocks are selected.

2.3.1.2 Initialize Controller(s)

Use this command to initialize the controllers (hardware objects). First select one or
more controllers then choose “initialize controller(s)” from the pop-up menu.

When a controller is initialized, all of the existing objects will be discarded from the
controller. This is immediately followed by a download of all controller resident objects
currently defined in the database to the controller. Once all objects are downloaded, the
controller resumes operation. This is also useful when switching to a new controller,
initializing will copy all needed information from server to new controller.

The controllers will be initialized one at a time and their initialization status will appear in
a batch process results window.

Note: there is only one controller under per field computer, and should be created by
Bes-Tech admin.

An error window will appear if no controllers are selected.

2.3.1.3 Reset Controller(s)

The reset command reboots the controller.

2.3.1.4 Set Controller(s) Online

Deprecated. This action will take no effect. The controller is always online.

2.3.1.5 Set Controller(s) Offline

Deprecated. This action will take no effect. The controller is always online.

2.4 Graphics Viewer

The graphics viewer provides an intuitive system interface that enables users to monitor and
control the system based on a graphical representation.

A graphic drawing of each specific EMCS system needs to be created using the Composer (see
Section 5) by Bes-Tech admin. The graphic image is to be named accordingly to the acronym of
the graphic object it represents (see Section 5.3). The graphic can then be displayed in the
Graphic Viewer showing actual values of the specific controls it displays (see Figure 5).

The user can select one or multiple graphic objects in the Grid display and then use the
View/Control Graphic pop-up menu item to display them in the Graphics Viewer.

Page | 13

The Graphics Viewer can also be invoked from the toolbar, in which case the user needs to use
the Open menu item or toolbar button in order to open the Object Selector Dialog for typing in
the acronym of the graphic object that needs to be displayed (see Figure 6).

Figure 5: Graphics Viewer display

2.4.1 File Menu

‘Open’ menu item invokes the Object Selector Dialog for selecting the graphic object to be
displayed in the Graphics Viewer.

Figure 6: Object Selector Dialog

‘Close’ menu item closes the graphic displayed in the currently selected tab.

‘Close All’ menu item closes all the graphics currently displayed in the Graphics Viewer.

‘Exit’ menu item closes all the graphics displayed and then disposes the Graphics Viewer
window as well.

Page | 14

2.4.2 Toolbar

Figure 7: Graphics Viewer Toolbar

Toolbar buttons (see Figure 7) offer the possibility of opening new graphics in the viewer and
scaling the opened graphic as the user prefers: zoom in, zoom out, zoom selected rectangle,
fit to view, zoom to original graphic size.

2.4.3 Auto Refresh

The user can select to enable automatic graphic updates by clicking on the Enable Auto
Refresh button. Default refresh rate is set to 60 seconds. If the user has admin rights,
minimum refresh rate (in seconds) is 1s, otherwise 10s. Once the automatic refresh gets
enabled, object values displayed in the active graphic are updated at the specified rate.

2.4.4 User actions

The user can click on object representations in the Graphic Viewer in order to perform
specific actions.

In case a graphic link gets clicked (Figure 5: blue rectangles on the left) then the selected
graphic gets opened in a new tab.

In case a value entry gets clicked (Figure 5: yellow or purple rectangles) the correspondent
object’s Field Information is displayed (see Section 3 for more information).

In case a value input gets clicked (Figure 5: green rectangles) the Input Value window (see
Figure 8) gets displayed allowing the user to change the input value of the selected object.

Figure 8: Input Value window

2.5 Grid Display

The grid display is a powerful system interface intended to give expert users quick access to
objects and control of the system.

2.5.1 Menu

2.5.1.1 File

The file menu provides a command to print the information currently listed in the Grid
Display.

 Open

 Zoom In

 Zoom Out

 Zoom in Rectangle

 Fit to View

 Zoom to Original Size

Page | 15

2.5.1.2 Columns

The Grid Display is composed of numerous columns filled with data. Some of the columns
can be turned off to reduce the amount of information on the grid and simplify the
display. Turn a column off by deselecting it from the list of columns in the columns menu.

2.5.2 Columns

2.5.2.1 Sort

The columns in the Grid Display for database objects can be sorted in ascending and
descending order.

The columns for the field objects cannot be sorted.

2.5.2.2 Changing Width and Position

The width of a column can be modified by moving the cursor to the top of the column and
to the side until it changes to a bidirectional arrow. Grab the side of the column and drag
it left or right.

Change the position of a column so that it appears next to a different column by moving
the cursor to the top of the column. Grab the top of the column and drag it left or right
across the screen to move it next to a different column.

2.5.3 Acronym

The acronym is the four part alpha-numeric acronym assigned to the object. It includes a
building acronym, system acronym, subsystem acronym, and an object acronym.

Any part of the acronym can be used as a filter to search for objects in the EMCS. Simply
type in the partial or complete acronym and click search. The results will appear in the Grid
Display.

In the following example, the filter lists only those objects that have a subsystem acronym
starting with an “N” and third character “C”. The “*” is a wildcard that represents any
character.

As characters typed into one of the four fields, a list of filtered objects will appear in a
dropdown list. Select from this list to automatically populate the field with the acronym or
use what you type.

2.5.4 Grid Options

2.5.4.1 Field

The grid display gives data on the objects from the field or from the database. Choose the
field option to display data that includes information about the objects residing on
hardware in the field. The field objects may include the following:

 Analog input

 Analog output

Page | 16

 Control block

 Digital input

 Digital output

 Graphic

 Hardware

 Loop

 Schedule

The grid display will provide the following information about field objects:

 Object acronym – The four part alpha-numeric acronym assigned to the object.

 Command, set point, input – Displays the numeric value of the input to an object and
defines it is a command, set point, or other type of input.

 Feedback, measured value, output – Displays the numeric value of the output of an
object. If the object is an analog output representing a sensor, for example, the
measured value will be displayed.

 State, version – Displays the current state and allows the user to change the state to
any of the following six states: Resume, activate, restart, deactivate, shutdown, and
stop. Refer to section 4.1.1 for more on control block states.

 Status – Displays the current control block status and allows the user to change the
status. Refer to section 4.1.2 for more on control block status.

 Lock, date – Displays the lock value. The lock value is one of the following four values:
Normal, medium, high, and lock-out. It is assigned to controllable objects such as
analog outputs, control blocks, Digital outputs, and loops.

 Key, time –Displays the key value. The key value is one of the following four values:
Normal, medium, high, and lock-out, that can be assigned to an object to control
other objects, such as control blocks and users.

 Report –Displays a message about the object when a report message has been
written to the object.

2.5.4.2 Database

The grid display can show data about objects from the field or from the database. Choose
the database option to display data that includes information about the objects saved in
the database. The following objects types may reside in the database:

 Alarm (database grid option only)

 Analog input

 Analog output

 Control block

 Digital input

 Digital output

 Graphic

 Hardware

 Loop

 History (database grid option only)

 Schedule

 User (database grid option only)

The grid display will provide the following information about database objects:

Page | 17

 Type – The type of object, see section 4.2.4 for object types.

 Building, system, subsystem, and object acronym – The four part alpha-numeric
acronym assigned to the object.

 Display sequence – The display sequence is a user defined, numeric value that may be
used to sort objects in the grid display by their display sequence number in ascending
or descending order.

 Object identifier – A three part numbering scheme that uniquely identifies objects
with a top, middle, and bottom assigned by the system based on the type of object
being created and the object locale.

2.5.5 Search/Filter

Several methods of filtering the data in the system is provided to help you quickly find the
information you are looking for.

2.5.5.1 Object Types

The list of objects that appear in the grid display can be filtered according to the type of
object, including the follows:

 Alarm (database grid option only)

 Analog input

 Analog output

 Control block

 Digital input

 Digital output

 Graphic

 Hardware

 Loop

 History (database grid option only)

 Schedule

 User (database grid option only)

The filter allows for the selection if multiple object types shown in the grid display.

2.5.5.2 Display (All, Normal, Critical)

The object definition window includes a display priority that can be defined when creating
or editing objects. The display priority defines one of three possible selections,
“DISPLAY_ALL”, “DISPLAY_NORMAL”, and “DISPLAY_CRITICAL”. Selecting to display the
critical objects in the grid display will only show objects with the DISPLAY_CRITICAL
priority. Selecting to display the normal objects will display objects with the
DISPLAY_NORMAL and display critical priorities. Finally, selecting to display all objects will
display all objects.

2.5.5.3 Search

When you have selected all filtering and search options, click the search button to search
the system. This may include the object acronym, object type, and display priority.
Objects that match your criteria will be presented in the grid display.

Page | 18

2.5.5.4 Refresh

The grid display presents static information to allow users to read the values even though
the EMCS is constantly changing. Refresh will update the grid display to give the most
current information.

Note that if you change the search and filtering options, you must click on the search
button to regenerate the list of objects in the grid display. And a Search will automatically
carry out Refresh action thereafter.

2.5.6 Views

A view is a snap-shot of the search and filter options. A view is provided to allow users to
quickly search without having to enter in the search and filter options.

2.5.6.1 Save Current Filter as View List

You can save the current search and filter options as a view list by selecting the save icon
under views. You will then be prompted for the view name, the scope, and description.
The scope allows you to create a global view list that can be used by all system users. As
an option, you can also create a personal view list that can only be used by you.

2.5.6.2 Show/Hide View List

You can view the pane for the view list by selecting the show/hide view list icon under
views.

Double click on the desired view to apply the filter settings.

2.5.6.3 Search View List

The view list includes a search option that allows you to type in characters in order to
narrow the list of displayed view names.

2.5.6.4 Delete View List

Delete a view by first highlighting it on the view list, then right click, and select “delete
selected view”.

2.5.7 Enable Auto Refresh

Auto refresh periodically updates the data in the grid display. When you select to enable
auto refresh, you are provided a field to define how often the display is updated.

2.5.8 Context Sensitive Pop-Up Menu (right click)

The pop-up menu provides various commands to allow users to manage objects and the
EMCS from the grid display. In order to access the pop-up menu, first view the list of field
objects in the grid display. Select the grid options you prefer and search. Then select one or
more of the objects from the filtered list of objects displayed in the grid display, right-click,
and the pop-up menu will appear. To select multiple objects, hold down the Shift or Ctrl key
while selecting objects with the mouse. The following commands are available from the pop-
up menu:

Page | 19

2.5.8.1 View/Modify Object Definition

The object definition window allows users to view and edit the static object information,
which varies for different object types.

2.5.8.2 View/Modify Field Information

The field information window displays dynamic information for field objects. It also
provide interface for user to control to these objects.

2.5.8.3 Edit Control Block/Schedule

A control block represents a piece of computer program written in the Distributed Control
Language. A schedule is a specialized control block that outputs ON/OFF status based on
current date and time. Control block will be opened in a text based editor, and Schedule
will be opened in a graphical editor which looks like a calendar.

2.5.8.4 Real-Time Plot

The real-time plot graphs data of an object in real-time from the EMCS. If multiple
objects are selected at the same time, they will appear in the same plot window.

2.5.8.5 Trend Plot

A trend plot graphs object data. If multiple objects are selected at the same time, they
will appear in the same plot window.

2.5.8.6 History Plot

A history plot graphs the data of a History object. Users can choose to plot multiple
objects or a single object in the same window.

2.5.8.7 Save Multiple Histories

The saving Multiple Histories data option is available for history objects. Users can save
the data by selecting multiple history objects. The saved data can be exported to a
spreadsheet in csv file format, with columns including:

 the date and time the data was recorded

 the acronym of the object

 the text message or history string

 the data of the object

2.5.8.8 Save Multiple Trends

The multiple Trends function exists for certain objects, such as CB, AI, AO, DI and DO. You
can save the data by selecting multiple objects. The trend data can be exported to a csv
file. Such data includes:

 the date and time the data was recorded

 the acronym of the object

 the text message or trend string

 the data of the object

Page | 20

2.5.8.9 Save ALL CBs (Admin Only)

Users can save all CBs by selecting this function. The saved data can be exported to txt
files in a folder.

2.5.8.10 View/Control Graphic

A graphic is an object that is an interactive illustration used to display real-time
information on any system part and to control the system output devices.

2.5.8.11 Get Archive Data

The Archive Data function exists for certain objects, such as history objects and alarms.
Retrieve and view the data by selecting an object and choosing to get the archive data.
The data presented depends on the type of object. For example, the archive data for a
history object may give the following information:

 the date and time the data was recorded

 the acronym of the object

 the text message or trend string

 the data of the object

 The archive data for an alarm object will show:

 the date and time the alarm was recorded

 the object that reported the alarm

 the text message or alarm string

 the number of times the alarm was triggered

 the number of notifications

 the user who acknowledged the alarm

 the time and date the alarm was acknowledged

 the cascading alarm

If multiple objects are selected at the same time, they will appear in different archive
data windows.

2.5.8.12 Create New Object

See section 3.1.

2.5.8.13 Create Similar Object

See section 3.1.

2.5.8.14 Create I/Os from XML

See section 3.1.

2.5.8.15 Delete Object

See section 3.1.

2.5.8.16 Check Dependencies

A control block may be dependent upon other objects if they are referenced in the
control block. Digi-SFT will not allow deletion of any referenced objects where such

Page | 21

dependencies exist. When an object is highlighted, check dependencies will list the
objects upon which the selected object has a dependency.

2.5.8.17 Batch Process Commands

The batch commands available from the pop-up menu on the grid display are provided to
automate the execution of the commands on multiple objects. The command will be
performed on each object, one at a time.

 Find Controller(s) 2.5.8.17.1

Use this command to check the status of controllers (hardware objects) by first
selecting one or more controllers and then choosing “find a controller” from the pop-
up menu.

The status of the controllers will be checked one at a time and appear in a batch
process results window.

 Set Selected HW Online/Offline 2.5.8.17.2

See section 2.3.1.4 and 2.3.1.5.

 Initialize Selected Controllers 2.5.8.17.3

See section 2.3.1.2.

 Reset Selected Controllers 2.5.8.17.4

See section 2.3.1.3.

 Compile Selected Control Blocks 2.5.8.17.5

See section 2.3.1.1.

3 Managing Objects

Digi-SFT is composed of building blocks known as objects. The objects represent physical hardware,
such as computers and controllers. In some cases, the objects represent virtual concepts such as
alarms and control blocks. This section describes how to manage objects. Managing objects is
necessary, for example, when first installing a new controller in the energy management control
system so that Digi-SFT can recognize the additional hardware.

3.1 Create, Create Batch I/O, Create Similar, Delete

Access the pop-up menu from the grid display to create or delete objects. Select the grid
options you prefer and search. Then select one or more of the objects from the filtered list of
objects displayed in the grid display, right-click, and the pop-up menu will appear. To select
multiple objects, hold down the Shift or Ctrl key while selecting objects with the mouse.

You can create a new object of any type by choosing to create a new object. The object
definition window enables users to edit the settings of the new object. Different types of
objects have different definitions. For more information, see the specific object type in this
section.

You can create a batch of I/O points from a pre-defined xml mapping file. This XML file is
typically made for a Bes-Tech product, such as Digi-RTU, Digi-VAV. User has to input a
combination of Acronym without the Object field, which will be generated from xml entries. A

Page | 22

valid Modbus address is also required, and will be applied to every point in the list. User can
choose only to create a subset of all the points within the xml file. After choosing the xml file,
the file will be parsed and a list of base information will be filled into table below. If a file of
extension “ivl” also exists in the same directory, then user has an option of creating a graphic
object along with the points. The “.ivl” file is the predefined template file, distributed along with
xml file.

When you select an object in the grid display and choose to create a similar object, the system
will open an object definition window that is a copy of the original object selected. The object
definition window allows the user to edit the settings of the new object. You will need to
change the object acronym in order to save the new object. Different types of objects have
different definitions. For more information, see the specific object type in this section.

Delete an object by selecting it in the grid display and choosing “delete object”. Digi-SFT will not
allow the deletion of an object that another object depends upon. Therefore, the dependency
must first be eliminated before an object can be deleted.

3.2 Shared Object Definition

All objects are required basic information including:

Page | 23

3.2.1 Acronym

The acronym is the four part alpha-numeric acronym assigned to the object. It is comprised
of a building acronym, system acronym, subsystem acronym, and an object acronym, 15
characters max for each field.

3.2.2 Type

The type defines the selected object type.

3.2.3 Description

The description is an optional field that may be used to describe the object.

3.2.4 Display Priority

The display priority defines one of three possible selections used to filter objects in the grid
display. These are “DISPLAY_ALL”, “DISPLAY_NORMAL”, and “DISPLAY_CRITICAL”. This
attribute determines whether the object will be shown in Grid display with desired display
level.

3.2.5 Display Sequence

The display sequence is a user defined, numeric value that may be used to sort objects in the
grid display by their display sequence number in ascending or descending order. When listing
a list of point, Grid display will use this number after compared Building and System, and
before comparing Subsystem and Object.

3.2.6 Display Format

The display format defines how the numeric value is displayed in the grid display. For
example, it indicates the number of decimal points and whether it is in scientific notation.

3.3 Alarms

An alarm is a type of object that provides an audible or visual warning of a problem or condition.
For more information on alarms, see section 6.

3.3.1 View/Modify Object Definition

The object definition window shown in Figure 9 provides you the ability to view and edit the
settings of an object. To view this window, open the grid display, select DB option and check
on Alarm type in Object Type Selector, then Search.

Page | 24

Figure 9 - Alarm Object Definition Window

3.3.1.1 Repeat Frequency

Alarm users will periodically be notified of an alarm that has been triggered at the repeat
frequency until it is acknowledged. The repeat frequency can range in time from 1
minute to 2147483647 minutes.

3.3.1.2 Tries to Cascade

Notification of the alarm will reoccur at the repeat frequency until the alarm has been
acknowledged. If the number of notifications equals the number of tries to cascade and
the alarm still has not been acknowledged, it is then escalated by cascading or triggering
another alarm object.

Page | 25

3.3.1.3 Alarm Color

When the alarm is triggered the alarm text color is displayed in the alarm window. Each
alarm is assigned a different color as a quick visual indicator of which alarm has been set.

3.3.1.4 Sound File

The sound file is a waveform (.wav) audio format that plays when the alarm is triggered.

3.3.1.5 Cascade Alarm Acronym

If the alarm has not been acknowledged and the number of notifications equals the
number of tries to cascade, the alarm is escalated by cascading or triggering another
alarm object. The cascade alarm acronym is the four part alpha-numeric acronym
assigned to the other alarm object.

3.3.1.6 Alarm Users

Triggered alarms are automatically routed to those users listed as the alarm users. Users
are notified of triggered alarms via an alarm window. Alarm users can be selected from
the list of users in the database. Note enlisted users will not get email even if they already
have email on profile. Use Additional Notification instead.

3.3.1.7 Additional Notification

The additional notification is a list of email addresses that will be sent a message when
the additional notifications schedule is applied. This same method can be utilized to send
text pages. Your text message system must be capable of sending text pages upon receipt
of an email.

3.3.1.8 Additional Notification Schedule

The notification schedule defines when the addition notification should be sent. This may
be useful for notifying key personal of alarms when they are scheduled to be on-call and
may not be working on a computer.

3.4 Control Blocks

A control block is an object that is a computer program written in the Distributed Control
Language.

3.4.1 View/Modify Object Definition

An object is managed using the object definition window, shown in Figure 10. To view this
window, open the grid display, select the grid options you prefer, and search.

Page | 26

Figure 10 - Control Block Object Definition Window

3.4.1.1 Host Field Computer

The host field computer is used to define the acronym of the field computer that manages
the hardware where the object resides. The object can also reside on the field computer
itself. Control blocks may reside on the server, or a field computer.

3.4.1.2 Host Controller

The host controller is used to define the acronym of the controller that manages the
object. If the control block is saved on a server or field computer this field should be left
blank. Host Controller should always be default blank, starting from centralized version.
No CB should reside in controller.

3.4.1.3 Trend Enable

The trend enable defines whether the input and output value of the object is saved to the
trending database.

3.4.1.4 Trend Frequency

The trend frequency defines how often the I/O value of the object is saved to the trending
database. The minimum number is 10 for normal user and 10 for system admin.

Page | 27

3.4.1.5 Trend Purge Interval

The trend purge interval defines the maximum amount of time the I/O value of the object
is saved in the trending database before it is deleted. The trend purge interval is set in
increments of one day and can range from 30 to 65,000.

3.4.1.6 Lock Value

The lock value is one of four values: normal, medium, high, and lock-out. These can be
assigned to controllable objects, such as analog outputs, control blocks, Digital outputs,
and loops.

3.4.1.7 Key Value

The key value is one of four values: normal, medium, high, and lock-out. These can be
assigned to an object to control other objects, such as control blocks and users. An object
can control the controllable object when the key value is greater than or equal to the lock
value.

3.4.1.8 Input Engineering Unit

The “input engineering unit” is used to define the engineering unit of the standard
predefined input variable of the object. The grid display shows the value of the standard
predefined input variable of the object and its units.

3.4.1.9 Output Engineering Unit

The “output engineering unit” is used to define the engineering unit of the standard
predefined output variable of the object. The grid display shows the value of the
standard predefined output variable of the object and its units.

3.4.1.10 Power-up State

When a control block is first executed, it will be initialized to the power-up state. This can
be one of the following six states: resume, activate, restart, deactivate, shutdown, and
stop. Refer to section 4.1.1 for more information about control block states.

3.4.1.11 Library Control Block

Algorithms can be reused throughout the EMCS by defining a control block as a library
control block object and making reference to the library using the #include statement and
the respective function call in another control block. In order to create a library control
block, select the library control block option in the object definition window.

A library control block is saved on the server and will not be executed. A control block
that is not a library can still be #include[d] in other control blocks. However, it will be
executed and appear in the Grid Display as a stopped control block since it does not have
a main() function.

3.4.1.12 View/Edit Source Code

Selecting “view/edit source code” opens the control block in the DCL Editor. User needs
EditCB permission to be able to modify the code, and DBModify permission to view it. For
more information, see section 4.11.

Page | 28

3.4.2 View/Modify Field Information

The field information window, shown in Figure 11, displays the values for the control block
field information and allows users to set or change some of those values. User needs to have
“Control” permission to be able to control the point, otherwise it’s read only.

Figure 11 - Control Block Field Information Window

3.4.2.1 Input Value

Displays the current value of the standard predefined input variable and allows you to
change that value.

3.4.2.2 Output Value

The output value field displays the current value of the standard predefined output
variable.

3.4.2.3 State

Displays the current state and allows the user to change the state to any of the following
six states: resume, activate, restart, deactivate, shutdown, and stop. Refer to section
4.1.1 for more about control block states.

Page | 29

3.4.2.4 Object Lock Value

The lock value is one of four values: normal, medium, high, and lock-out. These can be
assigned to controllable objects, such as analog outputs, control blocks, Digital outputs,
and loops. The current lock value is displayed for the object. Users can change the object
lock value in this field.

3.4.2.5 User Key Value

The user key value is one of four values: normal, medium, high, and lock-out. It can be
assigned to an object to control other objects, such as control blocks and users. An object
can control the controllable object when the key value is greater than or equal to the lock
value. The current key value is displayed for the object. Users can change the key to any
value in this field.

3.4.2.6 Object Key Value

Similar to User Key Value, the Object Key Value is the key when this CB is writing to other
points.

3.4.2.7 Current Status

Display of the current control block status. Refer to section 4.1.2 for more information
about control block status.

3.4.2.8 Command Status

Displays the current command status and allows the user to change this status.

3.4.2.9 Report

This will display a message about the object when a report message has been written to
the object.

See section 4.2.9.1 for more information about the report object variable method.

3.4.2.10 View (Last Written Attributes)

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that were most recently defined is displayed by
selecting to view the last written attributes.

3.4.2.11 View Variables

If the user selects the view variables option, a list of functions that are used by the control
block is provided. All of the defined variables in each function are given along with their
current values. The updated values can be obtained by selecting the refresh button. The
user may select any one of the values and type over the current value to change the value
of the variable.

3.4.2.12 Set

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

Page | 30

3.4.2.13 Refresh

The field information window presents static information to allow you to read the values
even though the EMCS is constantly changing. Refresh will update the field information
window to display the current information.

3.4.2.14 Last Written By, Date, Time

Users who made changes to data in the field information window are displayed along
with the date and time those changes were set.

3.5 Graphics

A graphic is a type of object that is an interactive illustration. It can be used to display real-time
information for any part of the system and control the system output devices.

3.5.1 View/Modify Object Definition

An object is managed using the object definition window shown in Figure 12. In order to
view this window, first open the grid display, select the database, “DB”, as the grid option
along with any other preferred options and click search.

Figure 12 - Graphic Object Definition Window

3.5.1.1 Host Field Computer

The host field computer is used to define the acronym of the field computer that manages
the hardware where the object resides or if the object resides on the field computer itself.
Graphics objects are only managed on the computer where the server software resides.

3.5.1.2 Host Controller

The host controller is used to define the acronym of the controller that manages the
object. Graphics objects are only managed on the computer where the server resides.
Therefore, the host controller field will be blank.

Page | 31

3.5.2 View/Modify Field Information (Not Applicable)

Graphics objects do not have any field information.

3.6 Hardware

A hardware object represents an instance of physical hardware, such as

 Field Computer

 Controller

 Server

3.6.1 View/Modify Object Definition

An object is managed using the object HW type corresponding definition window, shown in
Figure 13, Figure 14, Figure 15 and Error! Reference source not found..

Figure 13 – FC Hardware Object Definition Window

Page | 32

Figure 14 – Controller Hardware Object Definition Window

Page | 33

Figure 15 – Server Hardware Object Definition Window

3.6.1.1 Host Field Computer

The host field computer is used to define the acronym of the field computer. If the
hardware is a field computer, the field is populated with “IS.A.FIELD.COMPUTER”.

3.6.1.2 Host Controller

The host controller is used to define the acronym of the controller that manages the
object. For hardware objects other than the server or field computer, this field is
automatically populated with “IS.A.HW.CONTROLLER”.

3.6.1.3 Hardware Type

This field is used to describe the type of hardware the object represents. For example,

 Field Computer, this represents the minicomputer installed in each building

 Controller, this represents the process running inside FC. For centralized version, each
FC only has one virtual controller.

 Server, this represents the centralized server, maintained at Bes-Tech.

Page | 34

3.6.1.4 Controller: Online

A controller’s Online/Offline is not supported in this version. You can check object status
in Grid display for communication status of FC and Controller.

3.6.1.5 Controller: Poll Frequency

This is the minimum number of seconds between starting of 2 consecutive polling. For
example when polling frequency is 10 s, and controller takes 4 seconds to read all residing
points, then it will wait 6 second after and begin next batch. Any read to these points
within 10s will return the cached values. Change this number requires “Reset” the
controller through batch commands.

3.6.1.6 Controller: Modbus links

The “Modbus links” dropdowns allow users to view and edit the RS-485 link settings of a
controller. In this version, each link represents a USB-Serial converter plugged in with FC.

3.6.2 View/Modify Field Information

The Controller has field information. Other hardware types, such as the field computer and
server hardware objects do not have any field information.

The field information window shown in Figure 16 displays field information of a Controller,
you can check FC’s date and time, software version, and put note on it. Its status should be
initialized in batch process menu.

Page | 35

Figure 16 - Hardware Field Information Window

3.6.2.1 Controller Date

EMCS supports time and date expressions and necessitates that controllers keep track of
the time and date. The controller date displays the date as known by the controller, and
it’s used by resident Schedule object.

3.6.2.2 Controller Time

The controller time displays the time as known by the controller.

3.6.2.3 Software Version

The software version refers to the embedded firmware installed in the controller.

3.6.2.4 Current Status

The field displays the current controller status.

3.6.2.5 Command Status

Status should be initialized in batch process menu, other command status will take no
effect.

3.6.2.6 Report

This will display a message about the object when a report message has been written to
the object.

See section 4.2.9.1 for more information about the report object variable method.

Page | 36

3.6.2.7 View (Last Written Attributes)

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting to
view the last written attributes.

3.6.2.8 Set

Set will send any changes that you have made in the field information window to the
hardware.

3.6.2.9 Refresh

The field information window presents static information to allow you to read the values
even though the EMCS is constantly changing. Refresh will update the field information
window to display the current information.

3.6.2.10 Last Written By, Date, Time

Users who made changes to data in the field information window are displayed along
with the date and time those changes were set.

3.7 Inputs/Outputs

Input and output objects represent an instance of physical hardware, such as sensors or
actuators. They are divided into four different object types:

 Analog input

 Analog output

 Digital input

 Digital output

3.7.1 Shared attributes

All I/O has these attribute:

3.7.1.1 Host Field Computer

I/O should always reside in a FC.

3.7.1.2 Host Controller

I/O will be managed by the Controller in a FC.

3.7.1.3 Trend Enable

The trend enable defines whether the input and output (if applicable) value of the object
is saved to the trending database.

3.7.1.4 Trend Frequency

The trend frequency defines how often the I/O value of the object is saved to the trending
database. The minimum number is 10 for normal user and 10 for system admin.

3.7.1.5 Trend Purge Interval

The trend purge interval defines the maximum amount of time the “output” value of the
object is saved in the trending database before it is deleted. The trend purge interval is
set in increments of one day and can range in number from 30 to 65,000.

Page | 37

3.7.1.6 Modbus

The Modbus tab shown in allows users to view and edit the Modbus settings of an AI
object.

Figure 17 - Analog Input Object Definition Modbus Window

 Device Address 3.7.1.6.1

The “Device Address” is used to define the slave address of the device, in decimal.

 Analog 3.7.1.6.2

3.7.1.6.2.1 Register Number

The “Register Number” is the 2 byte register number, in Hex.

3.7.1.6.2.2 Function Code

The “Function Code” is the 1 byte command for Modbus message.

3.7.1.6.2.3 Type

The “Type” is used to define the type of the input value.

3.7.2 Analog Input

An analog input is an object that provides the control system an interface to the hardware,
such as an analog sensor for measuring the temperature or humidity.

Page | 38

3.7.2.1 View/Modify Object Definition

The object definition window, as shown in Figure 18, allows users to view and edit the
settings of an object.

Figure 18 - Analog Input Object Definition Window

 Engineering Units 3.7.2.1.1

The “engineering units” is used to define the engineering units of the sensed value,
such as pressure, temperature, or humidity.

 Engineering Unit Base 3.7.2.1.2

The “engineering unit base” is used for a linear transfer function to define the lower
range limit value of the signal in engineering units.

 Engineering Unit Range 3.7.2.1.3

The “engineering unit range” is used for a linear transfer function to define the upper
range limit value of the signal in engineering units.

 Input at Base 3.7.2.1.4

The “input at base” is used for a linear transfer function to define the lower range limit
value of the raw input signal.

Page | 39

 Input at Range 3.7.2.1.5

The “input at range” is used for a linear transfer function to define the upper range
limit value of the raw input signal.

 Gain Correction 3.7.2.1.6

The “gain correction” is a value that is multiplied by the transfer function to apply a
slope correction factor.

 Offset Correction 3.7.2.1.7

The “offset correction” is a value that is added to the minimum range limit of the
transfer function to compensate for signal bias.

3.7.2.2 View/Modify Field Information

The field information window shown in Figure 19 displays the field values and allows you
to set or change some of those values.

Figure 19 - Analog Input Field Information Window

 Current Value 3.7.2.2.1

The current value displays the measured value from the analog input.

 Current Static Definition Values 3.7.2.2.2

These are the same as those in Object Definition.

Page | 40

 Save Static Definition Values to Database 3.7.2.2.3

This will save static information, so user doesn’t need to open Object Definition to
modify them, if needed.

 Current Status 3.7.2.2.4

The field displays the current object status.

 Command Status 3.7.2.2.5

Displays the current object command status and allows the user to change this status.

 Report 3.7.2.2.6

This will display a message about the object when a report message has been written
to the object.

See section 4.2.9.1 for more about the report object variable method.

 View (Last Written Attributes) 3.7.2.2.7

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting
to view the last written attributes.

 Set 3.7.2.2.8

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

 Refresh 3.7.2.2.9

Refresh will update the field information window to display the current information.

 Last Written By, Date, Time 3.7.2.2.10

Displays users who made changes to the data in the field information along with the
date and time those changes were set.

3.7.3 Analog Output

An analog output is an object that provides the control system an interface to hardware,
such as an analog actuator that modulates a valve or controls the speed of a variable speed
motor.

3.7.3.1 View/Modify Object Definition

The object definition window, as shown in Figure 20, allows users to view and edit the
settings of an object.

Page | 41

Figure 20 - Analog Output Object Definition Window

 Lock Value 3.7.3.1.1

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital
outputs, and loops. Other object can control this object when key value is greater than
or equal to the lock value here.

 Engineering Units 3.7.3.1.2

The “engineering units” is used to define the engineering units of the command, such
as degrees (angle).

 Engineering Unit Base 3.7.3.1.3

The “engineering unit base” is used for a linear transfer function to define the lower
range limit value of the command signal in engineering units.

 Engineering Unit Range 3.7.3.1.4

The “engineering unit range” is used for a linear transfer function to define the upper
range limit value of the command signal in engineering units.

Page | 42

 Engineering Unit at 0% 3.7.3.1.5

The “engineering unit at 0%” is used for a linear transfer function to define the value
of the command signal in engineering units at its zero percent value.

 Engineering Unit at 100% 3.7.3.1.6

The “engineering unit at 100%” is used for a linear transfer function to define the
value of the command signal in engineering units at its one-hundred percent value.

 Output at Base 3.7.3.1.7

The “output at base” is used for a linear transfer function to define the lower range
limit value of the command signal sent to the hardware.

 Output at Range 3.7.3.1.8

The “output at range” is used for a linear transfer function to define the upper range
limit value of the command signal sent to the hardware.

 Gain Correction 3.7.3.1.9

The “gain correction” is a value that is multiplied by the transfer function to apply a
slope correction factor.

 Offset Correction 3.7.3.1.10

The “offset correction” is a value that is added to the minimum range limit of the
transfer function to compensate for signal bias.

3.7.3.2 View/Modify Field Information

The field information window, as shown in Figure 21, displays the field values and allows
users to set or change some of those values.

Page | 43

Figure 21 - Analog Output Field Information Window

 Command Value (Engineering Unit, %) 3.7.3.2.1

The current value of the command sent to the analog output device is displayed in
both engineering units and in percent.

 Feedback Value (Engineering Unit, %) 3.7.3.2.2

The current value of the feedback from an analog output device is displayed in both
engineering units and in percent.

 Object Lock Value 3.7.3.2.3

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital
outputs, and loops. The current lock value is displayed for the object and allows the
user to change the lock value.

 User Key Value 3.7.3.2.4

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object that can control other objects, such as control blocks and users.

Page | 44

An object can control the controllable object when key value is greater than or equal
to the lock value. A user can use any level of key when using Digi-SFT to control
points.

 Current Status 3.7.3.2.5

The field displays the current object status.

 Command Status 3.7.3.2.6

Displays the current object command status and allows the user to change this status.

 Report 3.7.3.2.7

This will display a message about the object when a report message has been written
to the object.

See section 4.2.9.1 for more about the report object variable method.

 View (Last Written Attributes) 3.7.3.2.8

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting
to view the last written attributes.

 Set 3.7.3.2.9

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

 Refresh 3.7.3.2.10

Refresh will update the field information window to display the current information.

 Last Written By, Date, Time 3.7.3.2.11

Displays users who made changes to the data in the field information window along
with the date and time those changes were set.

3.7.4 Digital Input

A Digital input is an object that provides a discrete signal from a switch or limit device.

3.7.4.1 View/Modify Object Definition

The object definition window, shown in Figure 22, allows users to view and edit the
settings of an object.

Page | 45

Figure 22 - Digital Input Object Definition Window

 Engineering Unit at 0 3.7.4.1.1

The “engineering unit at 0” is used to define the value of the Digital input signal in
engineering units at its value zero.

 Engineering Unit at 1 3.7.4.1.2

The “engineering unit at 1” is used to define the value of the Digital input signal in
engineering units at its value of one.

3.7.4.2 View/Modify Field Information

The field information window, as shown in Figure 23, displays the field values and allows
users to set or change some of those values.

Page | 46

Figure 23 - Digital Input Field Information Window

 Current Value 3.7.4.2.1

The current value displays the measured value from the Digital input.

 Current Status 3.7.4.2.2

The field displays the current object status.

 Command Status 3.7.4.2.3

Displays the current object command status and allows the user to change this status.

 Report 3.7.4.2.4

This will display a message about the object when a report message has been written
to the object.

See section 4.2.9.1 for more about the report object variable method.

 View (Last Written Attributes) 3.7.4.2.5

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting
to view the last written attributes.

 Set 3.7.4.2.6

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

 Refresh 3.7.4.2.7

The field information window presents static information to allow you to read the
values even though the EMCS is constantly changing. Refresh will update the field
information window to display the current information.

Page | 47

 Last Written By, Date, Time 3.7.4.2.8

Displays users who made changes to data in the field information window along with
the date and time those changes were set.

3.7.5 Digital Output

A Digital output is an object that provides a discrete signal sent to an on/off device.

3.7.5.1 View/Modify Object Definition

The object definition window, shown in Figure 24, allows users to view and edit the
settings of an object.

Figure 24 - Digital Output Object Definition Window

 Lock Value 3.7.5.1.1

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital
outputs, and loops. The current lock value is displayed for the object and allows the
user to change the lock value.

 Engineering Unit at 0 3.7.5.1.2

The “engineering unit at 0” is used to define the value of the Digital output signal in
engineering units at its value zero.

 Engineering Unit at 1 3.7.5.1.3

The “engineering unit at 1” is used to define the value of the Digital output signal in
engineering units at its value of one.

Page | 48

3.7.5.2 View/Modify Field Information

The field information window, as shown in Figure 25, displays the field values and allows
users to set or change some of those values.

Figure 25 - Digital Output Field Information Window

 Command Value 3.7.5.2.1

The current value of the command sent to the Digital output device is displayed.

 Feedback Value 3.7.5.2.2

The current value of the feedback from a Digital output device is displayed.

 Object Lock Value 3.7.5.2.3

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital
outputs, and loops. The current lock value is displayed for the object and allows the
user to change the lock value.

 User Key Value 3.7.5.2.4

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object that can control other objects, such as control blocks and users.
An object can control the controllable object when key value is greater than or equal
to the lock value. The current key value for the user is displayed and allows the user to
change the key value.

Page | 49

 Current Status 3.7.5.2.5

The field displays the current object status.

 Command Status 3.7.5.2.6

Displays the current object command status and allows the user to change this status.

 Report 3.7.5.2.7

This will display a message about the object when a report message has been written
to the object.

See section 4.2.9.1 for more about the report object variable method.

 View (Last Written Attributes) 3.7.5.2.8

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting
to view the last written attributes.

 Set 3.7.5.2.9

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

 Refresh 3.7.5.2.10

The field information window presents static information to allow users to read the
values even though the EMCS is constantly changing. Refresh will update the field
information window to display the current information.

 Last Written By, Date, Time 3.7.5.2.11

Display users who made changes to the data in the field information window along
with the date and time those changes were set.

3.8 Loops

A control loop is an object that performs a proportional, integral, derivative (PID) control on a
single input.

Page | 50

* Most often used as inputs and outputs to the loop object.

Figure 26 - Loop Object

3.8.1 View/Modify Object Definition

The object definition window, as shown in Figure 27, allows users to view and edit the
settings of an object.

Page | 51

Figure 27 - Loop Object Definition Window

3.8.1.1 Measured Variable Acronym

The input to the PID loop is the measured variable. The four part alpha-numeric acronym
assigned to the analog input object is used to define the source of the measured variable.

3.8.1.2 Controlled Variable Acronym

The output of the PID loop is the controlled variable. The four part alpha-numeric
acronym assigned to the analog output object is used to define the source of the
controlled variable.

3.8.1.3 Proportional Gain

The proportional gain, Kp, of the PID control is calibrated in the object definition window.

Page | 52

3.8.1.4 Integral Gain

The integral gain, Ki, of the PID control is calibrated in the object definition window.

3.8.1.5 Differential Gain

The differential gain, Kd, of the PID control is calibrated in the object definition window.

3.8.1.6 Initial State

When a loop is first executed, it will be initialized to the initial state. These are any of the
six states: resume, activate, restart, deactivate, shutdown, and stop. Refer to section
4.1.1 for more information about control block states.

3.8.1.7 Output Engineering Unit

The “output engineering unit” is used to define the engineering unit of the standard
predefined output variable of the object. The grid display shows the value of the
standard predefined output variable of the object and its units.

3.8.1.8 Initial Set Point

The set point is the target value the PID controller aims to reach. When a loop is first
executed, the PID control will use the initial set point.

3.8.1.9 Lock Value

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital outputs,
and loops.

3.8.1.10 Key Value

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object that can control other objects, such as control blocks and users. An
object can control the controllable object when key value is greater than or equal to the
lock value.

3.8.1.11 Output Base

The loop object has a base and range (lower limit and upper limit). The output of the loop
is scaled to be between the base and the range. The output is not truncated or clipped
between these values. If the (base, range) is set to (0, 1000) and the output of the loop is
600. If the loop output is connected to a control block the value used by the control block
is 600. However, it the loop output is connected to an analog output (AO), the AO would
be moved to 60%.

3.8.1.12 Output Range

The loop object has a base and range (lower limit and upper limit). The output of the loop
is scaled to be between the base and range. The output is not truncated or clipped
between these values.

3.8.1.13 SP Low Clamp (Set Point Lower Range Limit)

A lower range limit can be defined to prevent the set point from being assigned a value
less than the set point lower range limit.

Page | 53

3.8.1.14 SP Hi Clamp (Set Point Upper Range Limit)

An upper range limit can be defined to prevent the set point from being assigned a value
greater than the set point upper range limit.

3.8.1.15 Input Tolerance

The input tolerance is a value in percent that functions as a deadband on the input to the
PID loop. The input value will not be used if it is within the input tolerance of the last
accepted value. Once outside the input tolerance, the new input value is accepted and
used in the PID control calculation. This function helps prevent small changes in the input
signal (such as changes due to signal noise) from cascading into the PID loop calculation.

3.8.1.16 Output Tolerance

The output tolerance is a value in percent that functions as a deadband on the output
command of the PID loop. The output value will remain constant if the command is
within the output tolerance of the last accepted value. Once outside the output
tolerance, the command is accepted and used. This function is provided to prevent small
oscillations and reduce wear on the actuators.

3.8.1.17 Iteration Frequency

This field displays the frequency of the loop executions.

3.8.1.18 Shutdown Value

When the loop object is set to the shutdown state, the command or output value of the
loop is forced to the shutdown value.

3.8.1.19 Notes

The “notes” tab is provided as an option. A text-based note of up to 1024 characters can
be included with the object.

3.8.2 View/Modify Field Information

The field information window shown in Figure 28 displays the field values and allows users to
set or change some of those values.

Page | 54

Figure 28 - Loop Field Information Window

3.8.2.1 Measured Value

The input to the PID loop is the measured variable. The four part alpha-numeric acronym
assigned to the analog input object is used to define the source of the measured variable.

3.8.2.2 Set Point/Input

The set point is the target value the PID controller will aim to reach. The current value is
displayed for the loop object and allows the user to change the set point.

3.8.2.3 Controlled Value Feedback (Volts, %)

The output of the PID loop is the controlled variable. The four part alpha-numeric
acronym assigned to the analog output object is used to define the source of the
controlled variable.

Page | 55

3.8.2.4 Proportional Output

The value of the calculated proportional term is displayed.

3.8.2.5 Integral Output

The value of the calculated integral term is displayed.

3.8.2.6 Differential Output

The value of the calculated differential term is displayed.

3.8.2.7 Total Output

The value of the calculated PID loop is displayed in percent.

3.8.2.8 State

Displays the current state and allows the user to change the state to any of the six states:
resume, activate, restart, deactivate, shutdown, and stop. Refer to section 4.1.1 for more
information about control block states.

3.8.2.9 Object Lock Value

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital outputs,
and loops. The current lock value is displayed for the object and allows the user to
change the lock value.

3.8.2.10 User Key Value

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object to control other objects, such as control blocks and users. An object
can control the controllable object when the key value is greater than or equal to the lock
value. The current key value for the user is displayed and allows the user to change the
key value.

3.8.2.11 Object key Value

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object that can control other objects, such as control blocks and users. An
object can control the controllable object when key value is greater than or equal to the
lock value. The current key value for the object is displayed and allows the user to change
the key value.

3.8.2.12 Current Status

The field displays the current object status.

3.8.2.13 Command Status

Displays the current object command status and allows the user to change this status.

3.8.2.14 Report

This will display a message about the object when a report message has been written to
the object.

See section 4.2.9.1 for more about the report object variable method.

Page | 56

3.8.2.15 View (Last Written Attributes)

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set are displayed by selecting to
view the last written attributes.

3.8.2.16 Set

Selecting set will apply the changes to the field attributes and refresh the values in the
field information window.

3.8.2.17 Refresh

The field information window presents static information to enable users to read the
values even though the EMCS is constantly changing. Refresh will update the field
information window to display the current information.

3.8.2.18 Last Written By, Date, Time

Displays users who made changes to data in the field information window along with the
date and time those changes were set.

3.9 History

History is an object that offers a data acquisition mechanism that requires programming a
control block and is used to save user defined variables at a programmable data acquisition rate.
This requires more effort to record the data, but it is more flexible then automatic trending. The
trend interval is the same as the task rate of the control block, set by using delay(). Logic can be
used to trigger trending or stop trending. Users may even choose to use two different control
blocks to change the trend interval.

3.9.1 View/Modify Object Definition

The object definition window, as shown in Figure 29, provides you the ability to view and edit
the settings of an object. To view this window, open the grid display, select database, DB, as
the grid option along with other options you prefer, and search.

Page | 57

Figure 29 - History Object Definition Window

3.9.1.1 Host Field Computer

History objects are only managed on the computer where the server software resides.

3.9.1.2 Host Controller

History objects are only managed on the computer where the server resides. Therefore,
the host controller field will be blank.

3.9.1.3 Purge Days

The purge interval defines the maximum amount of time the trend data is saved in the
trending database before it is deleted. The trend purge interval is set in increments of
one day and can range from 30 to 65,000.

3.9.1.4 View History Data

The history data can be uploaded from the system database and viewed in a table by
selecting to view the history data.

 Acronym 3.9.1.4.1

The acronym is the four part alpha-numeric acronym assigned to the object. It
includes a building acronym, system acronym, subsystem acronym, and an object
acronym.

 Start Date and Time 3.9.1.4.2

A subset of the data stored in the system database can be uploaded from the server.
The beginning of the data set is defined by the start date and time.

 End Date and time 3.9.1.4.3

A subset of the data stored in the system database can be uploaded from the server.
The end of the data set is defined by the end date and time.

Page | 58

 Get Data 3.9.1.4.4

This will load and display the data in the current window.

 Save to Disk 3.9.1.4.5

This will save the data to a comma-separated value, text file. The file can be opened
with a text editor or spreadsheet program.

3.9.2 View/Modify Field Information (Not Applicable)

History objects do not have any field information.

3.10 Schedules

A schedule is an object that allows you to define what time events occur and what days, such as
weekdays, weekends, and holidays.

3.10.1 Alarm Schedule (Not supported)

3.10.2 Generic Schedule

A generic schedule is an object that allows users to define what time events occur and what
days, such as weekdays, weekends, and holidays.

3.10.2.1 View/Modify Object Definition

The object definition window, shown in Figure 30, enables users to view and edit the
settings of an object.

Page | 59

Figure 30 - Generic Schedule Object Definition Window

 Host Field Computer 3.10.2.1.1

Schedule usually resides in Field Computer, representing a field schedule on site, but
can also in Server.

 Host Controller 3.10.2.1.2

This field should be blank, since Schedule are in FC/Server.

 Is Virtual 3.10.2.1.3

The field displays if the generic schedule is virtual or not. Only a virtual schedule can
be added as a master schedule to a non-virtual one (see Section 4.12.1.3.1)

 View/Edit Schedule 3.10.2.1.4

Selecting “view/edit schedule” will open the schedule in the Schedule Editor. For
more information, see section 4.12.

3.10.2.2 View/Modify Field Information

The field information window, as shown in Figure 31, displays the field values and allows
users to set or change some of those values.

Page | 60

Figure 31 - Generic Schedule Field Information Window

 Current Date/Time 3.10.2.2.1

The schedule field information window displays the current date and time as known by
its Hosting Field Computer.

 State 3.10.2.2.2

Displays the current state and allows the user to change the state to any of the
following six states: resume, activate, restart, deactivate, shutdown, and stop. Refer
to section 4.1.1 for more about control block states.

 Object Lock Value 3.10.2.2.3

The lock value is one of four values, normal, medium, high, and lock-out, that can be
assigned to controllable objects, such as analog outputs, control blocks, Digital
outputs, and loops. The current lock value is displayed for the object and allows the
user to change the lock value.

Page | 61

 User Key Value 3.10.2.2.4

The key value is one of four values, normal, medium, high, and lock-out, that can be
assigned to an object that can control other objects, such as control blocks and users.
An object can control the controllable object when key value is greater than or equal
to the lock value. The current key value for the user is displayed and allows the user to
change the key value.

 Object key Value 3.10.2.2.5

Schedule inherits this information from CB, but it should not use it because it does not
control other points.

 Current Status 3.10.2.2.6

The field displays the current object status.

 Command Status 3.10.2.2.7

Displays the current object command status and allows the user to change this status.

 Report 3.10.2.2.8

This will display a message about the object when a report message has been written
to the object. See section 4.2.9.1 for more about the report object variable method.

 View (Last Written Attributes) 3.10.2.2.9

The fields displayed in the field information window represent the attributes of the
object. A list of the attributes or fields that have last been set is displayed by selecting
to view the last written attributes.

 Set 3.10.2.2.10

Selecting set will apply the changes to the field attributes and refresh the values
in the field information window.

 Refresh 3.10.2.2.11

The field information window presents static information to enable users to
read the values even though the EMCS is constantly changing. Refresh will
update the field information window to display the current information.

 Last Written By, Date, Time 3.10.2.2.12

Displays users who made changes to data in the field information window along
with the date and time those changes were set.

3.11 Users

A user object defines an individual’s account settings.

3.11.1 View/Modify Object Definition

The object definition window, as shown in Figure 32, allows users to view and edit the
settings of an object.

Page | 62

Figure 32 - User Object Definition Window

3.11.1.1 Host Field Computer

User objects are only managed at Server.

3.11.1.2 Host Controller

The host controller field should be blank.

3.11.1.3 User Name

The user name is an alpha-numeric string that is assigned to an individual and used to
login into Digi-SFT. It must contain at least 5 characters.

3.11.1.4 Password

The user assigns a password, an alpha-numeric string that the user enters to login into
Digi-SFT.

3.11.1.5 Re-type Password

The user re-types the password when it is assigned to confirm that it was entered
correctly.

Page | 63

3.11.1.6 User Time-Out

The user is automatically logged-out when no compunction since last time for user time-
out period.

3.11.1.7 Group

Users are assigned to a group to define their access control. See section 10.1 for more
information on groups and access control.

3.11.1.8 Is Administrator

A user classified as an administrator has more privileges than a typical user. See section
10.2 for more information on administrators and access control.

3.11.1.9 First Name

The first name of the individual is required for that individual’s account settings.

3.11.1.10 Last Name

The last name of the individual is required for that individual’s account settings.

3.11.1.11 Work Phone

The work phone number of the individual may be entered for that individual’s account
settings.

3.11.1.12 Home Phone

The home phone number of the individual may be entered for that individual’s account
settings.

3.11.1.13 Email

The email address of the individual may be entered for that individual’s account
settings.

3.11.2 View/Modify Field Information (Not Applicable)

User objects do not have any field information.

3.12 More about Lock and Key

The lock and key concept is like a permissions or access control for modifications of controllable
objects. For example, if a user wanted to set the value of a Digital output to test the actuator
they could set the value in the object definition window. A control block that normally
commands a Digital output would soon overwrite the value. Therefore, the user can change the
lock on the Digital output to medium and set their key value to medium, while the control block
remains at normal. Then, the control block does not have the level of key privileges to update
the Digital output, but the user does. When the user sets the output of the Digital output, it
does not get overwritten by the control block.

By convention, the lockout is primarily meant to prevent any other object from controlling that
object. However, other objects can be set to have a lockout key value to control it. By
convention, objects are not giving lockout key privilege. The lockout is meant for situations, for
example, if a pump is failed and we want to prevent it from being commanded.

Page | 64

Controllable objects can be assigned lock values (normal, med, high, lockout), such as control
blocks, loops, and Digital outputs. Objects that act or control other objects can be assigned key
values (low, med, high, lockout), such as control blocks and users.

4 Distributed Control Language Programming

4.1 Introduction

This document domain specific language called the “Distributed Control Language” (DCL). DCL
was designed to make control programs that monitor and control building systems. It is used in
Bes-Tech energy management control system (EMCS) software, and front end application, Digi-
SFT.

Since the DCL syntax is familiar to C++ languages, persons familiar with these “object oriented”
languages will immediately feel comfortable with DCL.

Individual DCL source code files are edited via the Digi-SFT user interface. Once editing is
complete, the source code file is sent to the central EMCS server where it is compiled in an
intermediate form called s-code (short for “stack” code).

Note that there is a one-to-one correspondence between DCL source code files and compiled s-
code files. In other words, DCL does not support the compilation of multiple source code files
into one “executable” code. Both DCL source code and s-code are saved in the EMCS database
for future use.

Each s-code file instance is hereafter referred to as a control block. Instances of control blocks
can be downloaded to EMCS field computers where they are executed (run) by an s-code
interpreter. This interpreter is referred to as a Control Block Manager (CBMgr). CBMgr’s can
execute control blocks simultaneously using a round robin scheduling approach.

Control blocks can interact with each other across hardware platforms as well as with various
I/O points (analog / Digital inputs and outputs). Conceptually, the system intelligence provided
by control blocks is distributed across the system, hence the “distributed” moniker in DCL.
Figure 33 illustrates some of the mechanisms and interactions just discussed.

The lower part of Figure 33 shows running control blocks interacting with each other as well as
the following types of “real world” interface objects:

 Analog Inputs (AI’s)

 Analog Outputs (AO’s)

 Digital Inputs (DI’s)

 Digital Outputs (DO’s)

Page | 65

DCL also allows the manipulation of simple control algorithms referred to as LOOPS. It is
important to note that static object parameters are not defined or changed using DCL. Rather,
these are set using the Digi-SFT object definition. Examples of such static parameters include
object acronyms, sensor base and range values, etc.

This document is organized as follows: First, the actual specification of the language are
presented, starting with variables and working up to expressions, statements, and functions.
Then, the actual structure of a DCL program (control block) is discussed and several examples
are presented. Finally, the Appendix offers a reference for keywords and built-in functions.

Page | 66

Figure 33 - DCL and S-Code / Control Block Interaction Diagram

4.1.1 Control Block States

Once a DCL file is compiled and the resulting control block is downloaded to a specific
hardware platform (i.e., field computer), it is in one of the following six states:

Page | 67

Active Control block execution is started using the activate method. The main
method executes once this method is complete if the activate method is
in front of it.

Resumed Control block execution is started using the resume method. The main
method executes once this method is complete if the resume method
exists.

Deactivate The control block executes the deactivate method and then execution is
terminated. The deactivate method works in combination with the
activate method.

Shutdown The control block executes its shutdown method and execution is
terminated.

Stopped Control block execution is terminated immediately. This state is entered
in one of four ways:

 DCL code was written without any “infinite” or continuous loops. The
code finished executing normally.

 Control block execution hit an unconditional stop statement (section
4.6.7).

 A user sent a stop command to the control block for debugging
purposes or some other reason.

 An error occurred during control block execution. Its status (section
4.1.2) will be set so as to give an indication of what kind of error
caused the execution to stop (divide by zero, array out of bounds,
etc.).

When the stopped state is entered, the control block stops execution
immediately. The control blocks program counter remains on any stop
instruction that was encountered or on the next statement that will be
executed if the control block is restarted.

Restarted The control block is running. The restarted state can only be initiated by
a restart command generated via the EMCS user interface. The purpose
of this command is to “restart” the control block from the stopped state
so program execution can continue where it left off without having to
enter through activate or resume.

The intent of the first four states is to provide two potential user-defined points of entry and
exit in the execution of each control block. This is illustrated in .

Page | 68

Figure 34- Control Block Execution: Normal Entry and Exit States

These first four states can be initiated by users or other control blocks using object
“methods” as described in section 4.2.9.6. Users can define specific functions that will
execute when entering active, resumed, deactivate and shutdown states.

Upon initial download or hardware device power up, the control blocks reside in either the
active, deactivate, shutdown, or resume states depending on how the control block object
was defined in the system. If a control block is deleted from the system, the CBMgr will
remove the control block from those it is presently running. The state can be defined in
several ways: One way to define a state is by selecting it under the “Powerup State” option
in the Object Definition window as shown in Figure 35. For other methods, see section
4.2.9.6.

Page | 69

Figure 35- Using the Object Definition Window to Select the Control Block State

4.1.2 Control Block Status

Aside from a control block’s state as just discussed in the previous section, a control block
has another characteristic referred to as its status. Status values are enumerated constants
stored in the system database. These values convey additional information about a control
block including error conditions. Status values can be set in one of the following ways:

 Upon initial download to the Control Block Manager (CBMgr), the control block status
will be set to the value defined during the control block definition in the Field
Information window as shown in Figure 36.

 A user can set the status of a control block via the Digi-SFT.

 Another control block can set the status of a different control block.

 A control block can set its own status via a function call.

 The CBMgr can set the status of a control block on some error condition (i.e., divide by
zero, array out of bounds, etc.).

The status of a control block can be in the Normal, On, Off, Night, Day and others conditions
predefined in the database. After the status is defined in the Field Definition window, the
status of the control block will display in the Grid Display of the Digi-SFT. In Figure 36 the
status of the control block is defined as NORMAL and displayed as NORMAL.

Page | 70

Figure 36- Control Block Status in the Field Information Window

Figure 37- Control Block Status in Grid Display Window

Page | 71

4.1.3 Font Conventions

In order to clearly distinguish DCL code from narrative, all code examples in the book are in
courier font.

4.1.4 Source Code Comments

DCL source code commenting is presented at this point in the document because many of
the code examples that follow are commented. Comments are short, concise narratives
provided by the DCL programmer in order to document information such as the reason that a
specific action was taken, the purpose of certain lines of code, the user who wrote a specific
control block, etc. The compiler ignores all comments and therefore comments exist only in
the DCL source files.

From a code maintenance standpoint, it is good programming practice to comment on the
source code. Commenting standards are discussed in more detail in section 13.1 of the
Appendix. Two styles of comments are supported. Both styles begin with two “reserved”
characters.

1. C++ Style

// This is the “two-slash” or C++ style comment.
// It is valid to the end of the current line.
If you tried to enter some more comments here without
another “two-slash” you would get a compiler error.
// This style is better for single-line comments

2. C Style

/* This is the “slash-star” or C style comment.
It is valid all the way from the first “slash-star”
through any number of carriage returns to the next “starslash”.
This style of comment is good for multiple-line
comments.
*/

Note that comments may begin at any location on a line. In other words, the comment “start
“delimiters (// or /*) do not have to be placed at the beginning of a line.

4.2 Variables

Variables serve as “placeholders” for information. A variable’s value is referred to by its name.
DCL supports numeric and certain object type variables. Alphanumeric string variables are not
supported. Variables must be declared before they are used.

Variables can only be used in a manner that is consistent with the variable type with which they
were declared. For example, if you declare a variable as an integer, you cannot later assign a
floating-point value to it.

All variables are declared and used within the DCL “file” in which they were created.

DCL distinguishes between primitive and object variables. Basically, primitive variables are used
to store numbers, dates or times, whereas object variables are used to represent EMCS objects
such as I/O points, other control blocks, users, etc. User defined variable types such as
structures and classes are not supported in DCL. A variable usage summary table is provided in
section 14.2 of the Appendix.

Page | 72

4.2.1 Variable Names

A variable name can contain letters, numbers, or underscores. However, all variable names
must start with a letter or underscore. Valid examples include:

x;
AHU1_MixedAirTemp;
__My1_2Custom3_4Variable5;

There is essentially no limit to the maximum length of a variable name. However, external
variable names are limited to 16 characters (see section 4.2.5 for a discussion on external
variables). Variable names are case sensitive. For example, AHU1 aHu1 and ahu1 are all
considered to be different variables. DCL promotes standardization in variable naming
schemes. A common technique used for long variable names is to use lower case for the first
complete word, and then capitalize the first letter of each next complete word such as:

mixedAirTemp
pressureSensor
returnAirFan

All EMCS enumerated constants used in DCL (section 4.3.1) are in Uppercase. This serves to
differentiate constants from variables. Variable names cannot be an enumerated constant,
function or language reserved words listed in section 14.1 of the Appendix.

4.2.2 Variable Scope

DCL variables can be used inside of a control block, referred to as internal variables; or
accessed from other control blocks with certain restrictions, and changed by other control
blocks, referred to as external variables. External variables are discussed in more detail in
section 4.2.7. Variables must be declared in one of two places before they can be used;
otherwise, the control block will not be compiled:

 At the beginning of the DCL file (global scope).

 At the beginning of function definitions before any other executable statements
(function scope).

DCL variables are considered to have “global” scope if they are declared outside of any user
defined or reserved functions. This means that they can be accessed and manipulated by
any function within the DCL file.

DCL variables have “local” scope if they are declared within a particular function. These
variables can only be accessed from within the function they are declared. Having “local”
scope variables promotes code reuse. For example, certain user defined control functions
can be tested, optimized, and then copied into other control blocks without having to declare
any additional “global” scope variables.

Note that no additional key words are required to define the variable scope as “global” or
“local”. The compiler assigns scope based on where it finds the variable declaration.

4.2.3 Primitive Variable Types

The following primitive variable types are supported:

Primitive Type Name Representation

Page | 73

Primitive Type Name Representation

Int signed integer

Float signed floating point (IEEE Standard 754-185)

Bool boolean (0/1)

Time hr:min:sec

Date mon\day\year

4.2.4 Object Variable Types

EMCS object manipulation with DCL takes place through the following object type variables:

AI Analog Input

AO Analog Output

DI Digital Input

DO Digital Output

CB Control Block

HIST A history object is a repository for user defined variables at a user defined
data acquisition rate.

LOOP This object repeatedly measures an AI, compares its engineering value to a
given set point value, then modulates an AO object using a proportional,
integral, derivative algorithm.

ALARM The purpose of alarm objects is to capture and disseminate information
concerning adverse or harmful situations in the system. Examples include a
coil freeze condition; a triggered building fire alarm, etc. Alarm objects are
“triggered” by control blocks based on certain conditional statements
within the control block source code.

HW A HW object represents a particular controller or field computer. As far as
DCL is concerned, this object has the fewest capabilities. It is used to
determine if a HW platform is available (i.e., it can be communicated with).

Object variable types have specific actions (methods) that can be invoked (section 4.2.9).
These actions either get the value of specific attributes of the object (read), or alternatively,
change the value of an object attribute (write).

4.2.5 Variable Declaration

Variables must be declared before they can be used. If the initialization of a variable is in the
same line of code with the declaration, than this variable will represent a constant value and
the assigned value cannot be changed later in the code. For a true variable meaning, the
initialization should follow the declaration on a different line of code.

Variable declaration can occur in one of two places:

 At the start of a DCL file before any function definitions (global scope). As will be
discussed in section 4.2.5.2, object variables must be declared with global scope.

Page | 74

 Within a function definition before any statements (local scope).

4.2.5.1 Primitive Variable Declaration

Primitive type variable declaration has one of the following two syntaxes:

// A number of un-initialized variables
VariableType VariableName1, VariableName2;

// One initialized variable set to constant value
VariableType VARIABLE_NAME = value;

VariableType can be one of the following:

int // 32 bit signed integer
float // 32 bit signed floating point
bool // Boolean 0=FALSE, 1=TRUE
time // Time in hr:min:sec
date // Date in mon:day:year

The first type of declaration assigns the value of zero by default to the declared variable.

The second declaration is a combination of declaration and assignment statement where
the value on the right hand side of the equals sign is assigned to the variable. It is
important to note that any variable declared in this manner is automatically considered a
constant by the DCL compiler, meaning that the variable cannot be assigned a new value
anywhere in the DCL code.

The value assigned to a variable must be consistent with the VariableType. For
example, the following variable declaration would cause a compiler error message since
the value assigned is not an integer.

int i, j, k; // Declaration of three integers
j = 2.5; // Will not compile! Value assigned is float

It is allowable to use arithmetic expressions as well as other previously declared and
initialized variables in declaration and assignment statements. For example:

float SLOPE = 10;
float INTERCEPT = 5;
float FACTOR = SLOPE * 20 + INTERCEPT;

All variable names in the above example have been capitalized in order to signify that
they are constants (i.e., declaration with assignment). However, capitalization is not
enforced by the compiler.

 A variable must be assigned a value before it can be used in subsequent declaration and
assignments as shown in the following example.

float SLOPE;
float INTERCEPT = 5;

// Will not compile! Variable “slope” has not been
// initialized with any value
float FACTOR = SLOPE * 20 + INTERCEPT;

Page | 75

4.2.5.2 Object Variable Declaration

Object variable declarations must have the following syntax:

// Object Variable initialized with referenced object
ObjectType VariableName = [Building.System.Subsystem.Object];

ObjectType can be one of the following:

// Valid Object Variable Types
AI // Analog Input
ALARM // Alarm
AO // Analog Output
CB // Control Block
DI // Digital Input
DO // Digital Output
HW // Hardware Device
HIST // History
LOOP // Control Loop

Note the special syntax and brackets of the referenced object:

[Building.System.Subsystem.Object]

This represents the complete name of the object that was defined via Digi-SFT during
object creation.

All object variables must have global scope and must be assigned values during
declaration.

This restriction serves two purposes:

1. It allows the compiler to check the database for the existence of the referenced
object (right hand side of the equals sign) before generating any s-code. The program
will not compile unless the referenced object has been previously defined and
entered into the database.

AI ahuDischAirTemp = [BURNETT.AH1.MA.TP];

A control block with this assignment will not compile unless

[Burnett.AH1.MA.TP] has previously been entered into the EMCS database
and it has been defined as an AI object.

Compilation will also fail if the ObjectType does not match the type of the
referenced object.

It is also worth noting that after a successful DCL compile, the control block is now
considered dependent upon any referenced objects. The EMCS will not allow deletion
of any referenced objects where such dependencies exist. For example, consider a
control block successfully compiled with the above assignment for
ahuDischAirTemp. The object called [BURNETT.AH1.MA.TP] now cannot be
deleted from the EMCS until the dependent control block is either deleted or
recompiled with a different assignment. All such dependencies must be removed
before an object can be deleted (i.e., the object could be referred to in more than one
control block).

Page | 76

2. Object declaration with global scope promotes code reuse. If a control block is
developed that serves a generic purpose (for example, mixed air control), this control
block can be reused multiple times using different equipment in different buildings
merely by changing the right hand side of the declaration / assignment statement.
Furthermore, since all variable declarations must be located at the beginning of the
DCL file (i.e., global scope), changing these is easy to do without wading through a lot
of code.

4.2.6 Arrays

It is often convenient to group variables together so that an operation can be performed on
all of them. DCL includes arrays for this purpose. Arrays are represented by variable names
followed by brackets that contain an index. For example, the following expression assigns the
value of 23 to the array at index = 5.

// Example array variable assignment myArray with index 5
myArray[5] = 23;

Each index is a separate placeholder for information and can be an arithmetic expression,
variable, function call, or any combination of those. All of the following are valid array
assignments.

// All are valid array assignments
myArray[i] = 23; // index = i
myArray[i – j] = thisArray[2];// index = i – j
myArray[i + function()] = 10; // index = i + value from function

Arrays are indexed starting at zero. The very first element of the above array is myArray[0]
not myArray[1]. The DCL compiler stores the maximum index of the array in s-code so that
array bounds checking can occur at run time. This will prevent access to any index less than
0 or greater than its maximum index minus one (index is set at compile time). For example,
an array of size 5 has valid indices 0 through 4 (0, 1, 2, 3, and 4).

Similar to the variable declarations previously discussed, array declarations for primitive
variable types may be one of two possible types: Declaration Without Assignment and
Declaration With Assignment.

4.2.6.1 Array Declaration without Assignment

// Array declaration without assignment for int’s, float’s,
// bool’s, times, and dates... Note that int represents any
// valid integer expression
VariableType VariableName[int];

In this type of declaration, no assignments are made and all array members will be set to
zero (similar to non-array variables in section 4.2.3). Assignments may then subsequently
be made within functions subject to variable scoping rules. DCL grammar requires that
the user “declare” the array size within the brackets (“[]”). The value inside the
brackets must be an integer or a mathematical expression made up of previously initialized
variables. For example:

// An array of ten int’s. No assignment
int j[10];

// An array of ten float’s. Size based on a previously

Page | 77

// initialized variable
int MAX_SIZE = 10;
float f[MAX_SIZE]; // Array size = MAX_SIZE = 10;

// The following will not compile since MAX_SIZE has not
// been initialized with a value
int MAX_SIZE;
float f[MAX_SIZE];

4.2.6.2 Array Declaration with Assignment

In this type of declaration, values are assigned to the array at compile time as follows:

// Array declaration with assignment
VariableType VARIABLE_NAME[] = {val1, val2, .. valn};

As with non-array primitive variable declaration and assignment statements, the above
array is considered a constant by the compiler. Therefore, members of the array cannot
be assigned new values in DCL code.

Note that DCL grammar requires that the user omit the size of the array when using array
declaration with assignment. For example, given the following declaration:

float A[] = {1.1, 2.2, 3.3, 4.4, 5.5};

The compiler will allocate space for five (5) array variables and will initialize these values
as follows:

A[0] = 1.1
A[1] = 2.2
A[2] = 3.3
A[3] = 4.4
A[4] = 5.5

Arrays of objects are also allowed and encouraged. However, same as with non-array
object variables, all assignments must occur at variable declaration as shown below.

// Object array declaration must include assignment
ObjectType VariableName[] = {Acronym1, Acronym2, etc.};

For example:

// Object array declaration
AI temps[] = { [BURNETT.AH1.MA.TP],

[BURNETT.AH2.MA.TP],
[BURNETT.AH1.OA.TP],
[BURNETT.AH2.OA.TP]};

This statement will create an AI object array of size 4, initialized to the AI points listed on
the right. The declaration and assignment statement can be “tabbed” and spread over
multiple lines to promote better readability.

4.2.7 External Variables

As previously discussed in section 4.2.2, external variables may be accessed by other control
blocks, thereby providing an additional information sharing mechanism.

Page | 78

For example, one control block could set an external boolean variable called ”winter” to
TRUE or FALSE. Other control blocks could then periodically check the value of this external
variable and base some action on whether it was set to TRUE or FALSE.

The syntax for declaring an external variable is as follows:

// Declares an external floating point variable called
// “cutOffTemp”
extern float cutOffTemp;

By making cutOffTemp ”external,” the declaring control block is allowing other control
blocks to read and write to this variable. Figure 38 is an example of external variable sharing
among three different control blocks.

Figure 38 - External Variables

CB #1 has declared two external variables (aveTemp and setBack) which are accessed by
other control blocks using the syntax:

controlBlockName.externalVariableName

In Figure 38, CB #2 is using aveTemp and setBack, whereas CB #3 is only using setBack.

While external variables offer added functionality and flexibility, there is an inherent danger
in allowing more than one control block to “write” a value to an external variable. This is

Page | 79

because the variable can only contain the last written value. In the preceding example, only
CB #1 is writing to aveTemp and only CB #3 is writing to setback. This makes these two
variables safe from such race conditions. However, if a value is assigned to aveTemp in CB
#3, an undesirable race condition between CB #3 and CB #1 would be created.

The following types of external variables are not allowed:

 Arrays of any variable type.

 Any object type variable.

 Any variable with local scope. All external variables must have global scope (i.e., they
must be declared at the beginning of the DCL source code file).

External variables are accessible across hardware platforms (i.e., server, field computers, and
controllers).

In conjunction with the EMCS database, the DCL compiler verifies that any external variable
referenced with the cb.varName syntax has been previously declared in the referenced
Control Block; otherwise, compilation will fail.

The DCL compiler also checks for instances of the following undesirable scenario. Consider a
control block called CB#1 that has been successfully compiled with the declaration:

// Declaration in CB#1
extern float temp;

Subsequently, CB#2 is written and successfully compiled with the following statement:

// Temp is referenced in CB #2
x = cb1.temp;

A dependency now exists between CB#1 and CB#2. Suppose that after CB#2 has been

compiled and downloaded, someone edits CB#1. Since the extern variable temp is used

by CB#2, the compiler will not allow the user to delete extern variable temp in order to
satisfy its “external variable dependencies.”

If any other control blocks on the hardware platform are using external variables “owned” by
the control block being compiled; and if there are unmet dependencies, the compilation will
fail. Then the appropriate error messages that describe the dependencies will be presented.

In order to delete the variable temp from CB#1, cb1.temp would have to be deleted from
CB#2 to break the dependency before CB#1 could be successfully compiled without the
statement:

extern float temp;

4.2.8 Input/Output Variables

All control blocks have two predefined floating-point variables called input and output.
The values of the input and output can also be viewed from the grid display when looking at
the field information (cmd/SP/input and BD/MV/Output). When trending a control block or
loop, the value of the output variable is the data that is saved to the database.

Page | 80

Figure 39 - Input value and output value in the Grid Display Window

The input value and output value may be viewed/modified from the field information as
described in section 3.4.2.1 and section 3.4.2.2. There DCL methods described in section
4.2.9.6 can also be used for input and output.

Note that the input and output do not and should not be explicitly declared (compilation
will fail otherwise). These two variables can be accessed from within a control block as any
other variable.

DuctPressure = input;
output = AverageValue;

input and output are floating-points. When they are used for the Boolean application, the
value of TRUE /ON is 123; and the value of FALSE/OFF is 124.

4.2.9 Object Variable Methods

EMCS objects can be manipulated by invoking certain actions on the declared object
variables. In other object oriented programming languages, these actions are commonly
referred to as “methods.” The syntax for using all object variable methods is:

ObjectVariable.MethodName(argument);

All of the following are valid method invocations.

Sensor1.getValue(); // Get value on AI
Actuator1.setCommandPercent(50); // Set value to 50% on AO
Loop1.resume(); // Invoke resume on LOOP

Page | 81

t = mixedAir.getValue(); // Get the value of mixedAir

Note that some methods require arguments such as setCommandPercent()as seen in the
above example. Other methods require a return a value. Each object type has certain
specific methods that can be invoked. These are further categorized and described in the
following sections. At least one example is given for each method. If a method returns a
value, its type is indicated before the method name. Any required argument types are listed
within parenthesis after the method name.

EMCS object manipulation within DCL takes place through object type variables. There are
two groups of object variable types. The first group of object variable types is called field
objects. Object variables falling into the field object category are illustrated in the following
Figure.

Figure 40 - Field Object Hierarchy

A second group of object variable types are not descended from the field object type.

Figure 41 - Non-Field Object Types

Object variables have their own unique methods that can be invoked as described in the
following section.

4.2.9.1 Methods for Any Field Objects (AI/AO, DI/DO, CB, LOOP)

This section discusses methods that may be invoked on all types of field objects including
AI, AO, DI, DO, CB, and LOOP.

getStatus()

This call returns an enumerated integer value which represents the current operating
status of the object. It will return FALSE (0) if the object does not respond. Enumerated
values are predefined and stored in the EMCS database as integer / capitalized string
value pairs. Although displayed in string format, in the database they have predefined
values. See section 4.3.1 for further discussion on enumerated constants. The system
database keeps a mapping of these integer values to their string representations so that
the user does not have to deal with the integer representation.

// Get status of controller

if (controller.getStatus() == FALSE)
{

Page | 82

// Controller did not respond!
}
else
{
 // Other action
}

setStatus(int)

Sets object’s status to a specified enumerated value (section 4.3.1).

// Set status of supplyFan to OUT_OF_SERVICE
supplyFan.setStatus(OUT_OF_SERVICE);

report(int, . . .)

This method allows the control block to send a “report”. The report consists of strings,
numeric values, or both strings and values to a particular object.

The first integer is an enumerated constant stored in the EMCS database that represents
the type or severity of the report. Some objects use this constant to decide upon a
particular course of action to take when they receive the report.

Any combination of strings or expressions can follow the first integer. The following are
some examples. The string argument needs to be in the double quote string delimiter.
Non-string and string values are separated by a comma.

// All the following report method calls are valid
monitor.report(SEVERITY_LOW,

“Water temperature is: “, currentTemp);
supplyFan.report(SEVERITY_LOW,

“Speed set to : “, 50, “ by Joe”);
joe.report(SEVERITY_MEDIUM,

“Float switch status=“, switch.getStatus());

Note that the last example used another method that calls for one of the expressions.

All non-string argument values are converted to alphanumeric strings (ASCII) when the
actual report is sent. For example:

supplyFan.report(SEVERITY_LOW, “Speed set to : “,
 50, “ by Joe”);

The actual report sent to supplyFan is: “Speed set to 50 by Joe” as shown in Figure 42.
The integer value of 50 will be converted to a string and then concatenated with the
strings on either side of the integer argument.

The report method is used for a number of different purposes depending on the type of
object it is used with. This will become clearer as methods for other objects are
presented.

When used with any field object, this method will set the object’s report attribute. The
report attribute can then be displayed at the EMCS user interface.

Page | 83

Figure 42 - Report in the Grid Display Window

4.2.9.2 AI Objects

getValue()

Returns the current floating point engineering unit value of an AI object. The returned
value is computed using AI object’s base and range properties set during object definition.

// Get value of returnTemp
currentTemp = returnTemp.getValue();

4.2.9.3 DI Objects

getValue()

Returns the current integer value of a DI object. The returned value will be one of the
enumerated constants chosen for 0-Value or 1-Value at the DI object definition. See
section 4.3.1 for a discussion of enumerated constants.

// Get value of floatSwitch
switch = floatSwitch.getValue();

4.2.9.4 AO Objects

getValuePercent()

Returns a floating point number between 0 and 100 that is representative of the AO
object’s current feedback value in percent. This number is computed using the AO
object’s base and range properties.

// Get percentage value of airTerminal
percent = airTerminal.getValue();

getValueEU()

Page | 84

Returns a floating point number that is the representative of the AO object’s current
feedback value in engineering units. This number is computed using an AO object’s base
and range properties.

// Get EU value of airTerminal
airflow = airTerminal.getValueEU();

getCommandPercent()

Returns a floating point number between 0 and 100 that is representative of the AO
object’s current command value in percent.

// Get command value of airTerminal in percent
cmdPercent = airTerminal.getCommand();

getCommandEU()

Returns a floating point number that is representative of the AO object’s current
command value in engineering units.

// Get command value of airTerminal in EU
cmdAirflow = airTerminal.getCommandEU();

setCommandPercent(cmd)

Sets the command value of an AO object to a given value that represents a percentage.
The cmd value must be a floating point value between 0 and 100.

// Set command value of airTerminal to 100%
airTerminal.setCommandPercent(100);

setCommandEU(cmd)

Sets the command value of an AO object to a given value that represents engineering
units.

// Set command value of airTerminal to 500 CFM
airTerminal.setCommandEU(500)

Note that the base and range of the object to which airTerminal refers should have
been defined such that: base <= 500 <= range.

getLock()

Returns an integer that is representative of the AO object’s current lock value.

// Get lock value from damper1
lock = damper1.getLock();

Lock (and key) values are a series of enumerated constants stored in the EMCS database.
Valid constant values that should be used are as follows:

LK_LOW
LK_MED
LK_HIGH
LK_LOCKOUT

Page | 85

setLock(lock)

Sets the AO object’s lock value to a specified value. Lock (and key) values are a series of
enumerated constants stored in the EMCS database. Valid constant values that should be
used are as follows:

LK_LOW
LK_MED
LK_HIGH
LK_LOCKOUT

// Set lock value at damper1 to LK_MED
damper1.setLock(LK_MED);

4.2.9.5 DO Objects

getValue()

Returns the current feedback integer value of a DO object. The value returned will be one
of the enumerated constants chosen for the 0-Value or 1-Value set when the DO object
was defined. See section 4.3.1 for a discussion of enumerated constants.

// Get feedback value of fanStart
fbVal = fanStart.getValue();

getCommand()

Returns the current command integer value of a DO object. The value returned will be
one of the enumerated constants chosen for the 0-Value or 1-Value when the DO object
was defined. See section 4.3.1 for a discussion on enumerated constants.

// Get command value of fanStart
cmdVal = fanStart.getCommand();

setCommand(cmd)

Sets the command value of the DO object to the specified enumerated constant value.
For example:

// Set command value of fanStart
fanStart.setCommand(ON);

The DCL compiler will check the EMCS database to make sure that the method argument
is one of the 1-Value or 0-Value constants defined for the referenced DO object.

getLock()

Returns an integer that is representative of the DO object’s current lock priority value.
Valid lock values are between 0 and 255.

// Get lock value of fanStart
lock = fanStart.getLock();

setLock(lock)

Page | 86

Sets the DO object’s lock priority to a specified value. Valid lock values are between 0 and
255.

// Set lock value of fanStart to value contained in
// variable lock
fanStart.setLock(lock);

4.2.9.6 CB and LOOP Objects

getInput()

Returns the current floating point value of a CB or LOOP object’s input variable.

// Get input value from mixedAirCB
currentInput = mixedAirCB.getInput();

setInput(input)

Sets a CB or LOOP object’s input variable to a specified floating point value.

// Set input value to 55
mixedAirCB.setInput(55);

getOutput()

Returns the current floating point value of a CB or LOOP object’s output variable.

// Get output value from mixedAirCB
currentOutput = mixedAirCB.getOutput();

getLock()

Returns an integer that is representative of the CB or LOOP object’s current lock value.
Valid lock values are between 0 and 255.

// Get lock value from pressureLoop
lock = pressureLoop.getLock();

setLock(lock)

Sets the CB or LOOP object’s lock priority to a specified value. Valid lock values are
integers between 0 and 255.

// Set lock value at pressureLoop to 20
pressureLoop.setLock(20);

getKey()

Returns an integer that is representative of the CB or LOOP object’s current key priority
value. Lock (and key) values are a series of enumerated constants stored in the EMCS
database. Valid constant values that should be used are as follows:

LK_LOW
LK_MED
LK_HIGH
LK_LOCKOUT

Page | 87

// Get key value from pressureLoop
key = pressureLoop.getKey();

setKey(key)

Sets the CB or LOOP object’s key priority value to specified value. Lock (and key) values
are a series of enumerated constants stored in the EMCS database. Valid constant values
that should be used are as follows:

LK_LOW
LK_MED
LK_HIGH
LK_LOCKOUT

// Set key value at pressureLoop to LK_LOW
pressureLoop.setKey(LK_LOW);

getState()

Returns an enumerated integer value that represents the CB or LOOP object’s state. For a
LOOP this can be one of for possible values (active, resumed, deactivate, shutdown).

// Get pressureLoop’s current state
currentState = pressureLoop.getState();

State values are stored as enumerated constants in the database as follows:

STATE_ACTIVE
STATE_RESUMED
STATE_DEACTIVE
STATE_SHUTDOWN
STATE_RESTARTED
STATE_STOPPED

Note the last two states are only valid for a CB. A CB can be stopped at its current
instruction by a user if error conditions are encountered (i.e., divide by zero, array out of
bounds, etc.). A CB can be restarted at its next instruction by a user.

shutdown()

If the referenced object is a CB and its current state is restarted, active or resumed, the
following will occur:

1. The shutdown() function within the referenced CB will run.

2. The CB state is set to shutdown. CB execution is terminated even though the CB still
exists

If the referenced object is a LOOP, and its current state is active or resumed, the following
will occur:

1. The LOOP’s controlled object (typically of type AO) is adjusted such that it is equal to
the LOOP’s defined shutdown value.

2. Iteration of the LOOP is stopped and its state is set to shutdown.

Page | 88

// Invoke shutdown method in CB1 if it exists
CB1.shutdown();

// Shutdown pressureLoop
pressureLoop.shutdown();

activate()

If the referenced object is a CB in the stopped, deactivate or shutdown states, the
following will occur:

1. The CB’s state is set to active.

2. Any user defined activate() function within the referenced CB will run. If no such
function was defined, skip to 3.

3. Any user defined main()function within the referenced CB will run. If no such
function was defined, skip to step 4.

4. After running main(),execution of the CB will stop. The CB will be moved to the
inactive queue and its state set to stopped.

 If the referenced object is a LOOP and its state is deactivate or shutdown, the following
will occur:

1. The LOOP’s state sets to active.

2. Iteration of the LOOP will be started with zeroed out integral, derivative, and
proportional terms.

// Invoke activate method in CB1 if it exists
CB1.activate();

// Activate pressureLoop
pressureLoop.activate();

deactivate()

If the referenced object is a CB and its current state is restarted, active or resumed, the
following will occur:

1. Any user defined deactivate() function within the referenced CB will run. If no
such function was defined, skip to 2.

2. The CB is moved to the inactive queue by the CBMgr and its state is set to deactivate.

If the referenced object is a LOOP, and its current state is active or resumed, the following
will occur:

1. Iteration of the LOOP is stopped and its state is set to deactivate.

// Invoke deactivate method in CB1 if it exists
CB1.deactivate();

// Deactivate pressureLoop
pressureLoop.deactivate();

resume()

Page | 89

If the referenced object is a CB and its current state is stopped, deactivate or shutdown,
the following will occur:

1. The CB’s state is set to resumed.

2. Any user defined resume() function within the referenced CB will run. If no such
function was defined, skip to 3.

3. Any user defined main()function within the referenced CB will run. If no such
function was defined, skip to step 4.

4. After running main(),execution of the CB will stop. The CB will be moved to the
inactive queue and its state set to stopped.

If the referenced object is a LOOP in the deactivate or shutdown state, the following will
occur:

1. The LOOP’s state is set to resumed.

2. Iteration of the LOOP will start using any saved integral, derivative, and proportional
terms.

// Resume pressureLoop
pressureLoop.resume();

4.2.9.7 HIST Objects

history(date, time, string literal, float)

This method enables the logging of a single object attribute at selected times. History
objects provide more flexibility than automatic trending. The history object must be
programmed in a control block and is used to save user defined variables at a
programmable data acquisition rate. Each history method call will generate a new entry
into the trending table within the EMCS database for the referenced HIST object. If one
wanted to use the system date and time values, the following history statement is valid:

HISTObject.history(sysdate(), systime(), “chws”, chwst);

Alternatively, if we wanted to indicate the exact top of the hour, the minutes and seconds
could be zeroed out.

HISTObject.history(sysdate(),
hour():0:0,
“ANDREWS CHWS”,
chwst);

4.2.9.8 ALARM Objects

trigger(int, . . .)

This method is used to “trigger” an alarm. The first argument represents an enumeration
value that must be defined by the CB programmer. It is used to distinguish between
different triggers. For example, a CB may want to trigger the same alarm object for both
a freeze and flood condition. The remainder of the arguments are identical to the report
arguments discussed in section 4.2.9.1. An example of how to use this method is as
follows.

Page | 90

ALARM highSeverityAlarm = [UNL.ALARM.HIGH.SEVERITY];

// Alarm object enumerations
int FREEZE_ALARM = 0;
int FLOOD_ALARM = 1;

// After some conditional statements that detect a freeze
// condition. The variable “mixedAirTemperature” contains
// the value of the current mixed air temperature at some
// air handling unit
highSeverityAlarm.trigger(FREEZE_ALARM,

“Coil freeze temp = ”,
mixedAirTemperature);

// After some conditional statements that detect a flood
// condition
highSeverityAlarm.trigger(FLOOD_ALARM,

“Flood at And. Hall”);

4.2.9.9 HW Objects

getStatus()

The syntax of this method has been previously discussed in section 4.2.9.1. This function
will return FALSE (0) if no response was received. It can therefore be invoked on HW
objects to see if they are “on-line” or otherwise functioning. For example, one could call
getStatus() on a controller before reading a number of points that reside there. If
getStatus()on a HW object returned FALSE, this fact could then be used to trigger an
alarm.

report(int, . . .)
This method is similar to the one having the same name described in section 4.2.9.1 and
can be used to set the report attribute of a HW object.

4.3 Constants and Literals

In addition to variables, DCL includes constants and literals. Constants are enumerated values
stored in the EMCS database. Literals are explicit numbers or text strings. Both constants and
literals are described in this section.

4.3.1 Enumerated Constants

Enumerated constants have the following uses in DCL:

 To indicate engineering units on DI and DO objects (i.e., Value @State 1 , Value
@State 0).

 To represent the criticality of reports (section 4.8.5).

 To represent object status. (section 4.1.2).

 To represent the state of control blocks and LOOP’s. (section 4.1.1).

 As truth values (TRUE = 1, FALSE = 0).

 Other user defined uses.

Constants are stored in the EMCS database as integer and capitalized string value pairs. The
DCL compiler will first check if a constant is some user defined constant within the CB (i.e.,
some user defined variable). If it is not user defined, the compiler will attempt a EMCS

Page | 91

database look up of the identifier. If the identifier is found, the compiler will substitute its
string representation with an integer representation used by the s-code. However, source
code will always be presented using the string representation.

4.3.2 Number Literals

For example, all the following are valid number literal assignments assuming that the
variable “f” is a floating point type.

f = 1; // Ok. Note no decimal point
f = 1.23; // Ok. Note decimal point
f = 1.0e-6; // Ok. Note scientific notation

Number literal assignments are more restrictive with int variables.

int j;
bool b;
j = 1; // Ok
j = 1.23; // Decimal point not allowed!
j = 1.0e-6; // Scientific notation not allowed!

Assignments to bool variables are the most restrictive.

b = 1; // Ok
b = 0; // Ok
b = AnythingElse // Not Allowed!

4.3.3 String Literals

These are used in conjunction with the history() and report() functions and methods
(section 4.8.5). String literals must begin and end with double quotes.

“This is a valid string literal”
“This is not because it’s missing an ending double quote

Note that DCL does not support escape characters to allow placing of quotes within strings.

4.4 Operators

4.4.1 Arithmetic Operators

The following operations are supported for float and int variables.

Name Operator Use

Addition + op1 + op2
Subtraction - op1 – op2
Multiplication * op1 * op2
Division / op1 / op2
Exponentiation ^ op1 ^ op2
Modulo % op1 % op2
Unary sign + or - -op1, +op1
Increment / Decrement ++ or -- op1++ or op1--

The modulo operator can only be used with integers. It returns the result of integer division.
For example, 7 % 5 = 2 (the remainder of 7 / 5 is 2).

Page | 92

Note that the result of any expression with mixed int and float operands will be promoted
to float. Remainders of integer division will be dropped. Math operations on Booleans are
not allowed.

Add and subtract operations are allowed on time variables. When adding, the result may
represent the next day. For example, if adding 11:50:0 + 1:0:0, the result will be 0:50:0.
Similar behavior may result when subtracting.

4.4.2 Relational Operators

The following relational operators are supported for Booleans, integers, floats, dates and
times. The value returned from all relational operations is Boolean (0 or 1, TRUE or FALSE).

Operator Use Return TRUE if

== op1 == op2 op1 and op2 are equal
!= op1 != op2 op1 and op2 are not equal
> op1 > op2 op1 is greater than op2
>= op1 >= op2 op1 is greater than or equal to op2
< op1 < op2 op1 is less than op2
<= op1 <= op2 op1 is less than or equal to op2

Mixed int, float and bool relational operands are allowed. Mixed operands of other
types are not allowed.

4.4.3 Logical Operators

The following logical operators are supported for Booleans.

Operator Mnemonic Use Return TRUE if

AND “and” op1 AND op2 op1 and op2 are both TRUE
OR “or” op1 OR op2 op1 or op2 are TRUE
! “not” !op1 op1 is FALSE

The value returned from all logical operations is Boolean (TRUE or FALSE).

4.4.4 Assignment Operator

floats, ints, bools, dates and times. It cannot be used with object variables. For
example, assuming that the following variables are all object variables, the assignments
made are not allowed.

myAI = 7.5; // Not ok!
myAI_1 = myAI_2; // Not ok!

4.4.5 Operator Precedence

Unless parenthesis are used, default operator precedence is as follows (from highest to
lowest):

1. unary sign operator (+ or -)
2. exponentiation (^) (this operator is “right” associative: 2^3^2 = 2^(3^2) = 2^9)
3. multiplication and division (* or /)
4. addition, subtraction and modulo (+ , - or %)

Page | 93

5. relational (< > <= >=)
6. equality (== !=)
7. logical (AND, OR)
8. assignment (=)

4.5 Expressions

The basic building blocks of DCL are expressions. Expressions can be various combinations of
variables, arithmetic operators, function calls, etc. The job of an expression is two-fold,
performing a computation and returning a value. The data type of the value returned is
dependent on the elements used in the expression.

The following are examples of expressions:

f * 1.08 / g // Returns result of computation
press1 <= press2 // Returns TRUE or FALSE
z + min(x, y) // Returns result of computation (i.e., Adds

// value of z to minimum of x and y)

4.5.1 Arithmetic Expressions

These expressions perform some computation subject to the precedence constraints
discussed in section 4.4.5. Precedence can be “overridden” through the use of parenthesis.
For example:

// Multiplication will happen first since it has higher
// precedence
x + y * x

// The preceding is equivalent to x + (y * z). We can change
// precedence so as to perform the add first
(x + y) * z

DCL allows mixed mode arithmetic, so arithmetic expressions can be comprised of any
combination of floating point numbers, integers, and Booleans. The resultant variable type
of an expression depends on the expression operands. The following table summarizes
mixed mode behavior in DCL.

Mixed Mode Operands of Type Resultant Type

float, int, bool float
float, int float
float, bool float
Int, bool int

Basically, int’s and bool’s are “promoted” if they are found in an expression with float,
and bool’s are promoted if found in an expression with an int.

Functions calls can also be operands in arithmetic expressions.

// Function call in arithmetic expression
x + min(x, y, z) – 10

Time and date variables cannot be used in arithmetic expressions.

Page | 94

4.5.2 Logical Expressions

Logical expressions are typically used as a test before branching program flow. Logical
expressions will evaluate to TRUE or FALSE. Valid examples include:

// Valid logical expressions
x <= y // TRUE if x is less than or equal to y
time1 != time2 // TRUE if time1 is not equal to time2
date1 > date2 // TRUE if date1 is greater than date2
x == ln(y) // TRUE if x is equal to natural log of y

Logical expression operands can include any primitive variable type including dates and
times.

Just as arithmetic expressions can be combined with additional operators (i.e., +, -, *, etc.),
logical expressions can be combined with the operators and, or, and not (and, or,!).

// Logical expressions combined with AND, OR and ! (NOT)
x < y and z == 5 // TRUE if x less than y and z equal to 5
s1 or s2 // TRUE if s1 or s2 are TRUE
!(x > y) // TRUE if x is less than or equal to y

// (i.e., x is not greater than y)

4.5.3 Time Expressions

Time expressions represent time values and are used in conjunction with time variables as
well as time ranges (section 4.5.5) and time functions (section 4.8.4). The format of a time
expression is: hour:minute:seconds where hours, minutes, and seconds can be
other integer expressions including integer literals. Integer literals must be within the ranges
of 0-23, 0-59 and 0-59 respectively. For example:

10:30:0 // Ok.
0:0:0 // Ok. This represents midnight
5:25:55 // Ok.
24:0:0 // Not Ok! Hour value out of range
10:60:60 // Not Ok! Minute and Second value out of range
12:25.2:0 // Not Ok! Minute is not an integer

All of the preceding time expressions had integer literals as their arguments. Therefore, the
value of the expression can be evaluated at compile time. An error message will result if the
compiler finds that any of the integer literal values are not within the expected range. Time
expressions of any of the following forms are also valid.

// Valid time expressions not computable at compile time
i:10:sec() // hours = i, min = 10, sec = current seconds
12:i + j:0 // hours = 12, min = i + j, sec = 0
j:min() + 1:k // hours = j, min = current min + 1, sec = k

Note that none of the three preceding time expressions can be evaluated at compile time.
Rather, evaluation occurs during the execution of the CB. This means that if any of the
resulting hour, minute, or second values are out of range, the CBMgr will stop execution of
the CB and set its state and status values accordingly.

Time expressions can be also assigned to time variables.

time t, midnight; // Declaration of two time variables

Page | 95

.

.
midnight = 0:0:0; // Assignment
.
.
t = hour():30:0 // Assignment

Note that the declaration of midnight could have included the assignment on the same line if
desired since the time expression contained all literals. Furthermore, if the user intended to
use midnight as a constant, declaration could be as follows.

// Declaration of midnight as constant. Note that all caps
// are used to indicate constant status
time MIDNIGHT = 0:0:0;

4.5.4 Date Expressions

Date expressions represent date values and are used in conjunction with date variables as
well as date ranges (section 4.5.6) and date functions (section 4.8.4). The format of a date
expression is: month\day\year where the month, day, and year are integer numbers or
expressions within specified ranges.

Month 1 to 12
day 1 to maximum number of days per month based on standard calendar
year 1 to 9999

1\25\2010 // Ok. January 25, 2010
9\31\2001 // Not Ok! September only has 30 days

Note the backslash (\) has been chosen in lieu of the typical forward slash date delineation
character (/) in order to distinguish between a date and division operations.

In all of the preceding examples, the value of the date expression can be evaluated by the
compiler at compile time (similar to time expressions with all literals discussed in section
4.5.3). An error message will result if the compiler finds that any of the integer literal values
are not within the expected range. However, date expressions of any of the following forms
are also valid.

// Valid date expressions not computable at compile time
i\1\2002 // month = i, day = 1, year = 2002
12\i + j\2002 // month = 12, day = i + j, year = 2002
1\day()\2010 // month = 1, day = current day, year = 2010

All of the preceding date expressions must be evaluated during CB execution. If any of the
resulting month, day, or year values are out of range, execution of the CB is stopped and its
state and status values are set accordingly.

4.5.5 Time Range

One important function of the control blocks is to start and stop equipment based on time
criteria (i.e., time scheduling). Therefore, a logical Boolean construct called a “time range” is
provided in order to make this task easier for the DCL programmer and to improve program
legibility. The syntax of a time range is:

TimeExpression_1 -> TimeExpression_2

Page | 96

This expression returns a Boolean TRUE or FALSE based on whether the current system time
is greater than or equal to TimeExpression_1 and less than or equal to
TimeExpression_2. For example:

8:0:0 -> 17:0:0 // Will return TRUE if current time is between
// 8 AM and 5 PM, FALSE otherwise

This expression is meant to replace the following equally valid expression:

8:0:0 <= time() AND time() <= 5:0:0

4.5.6 Date Range

Date ranges are analogous in purpose and syntax to time ranges. Their syntax is:

DateExpression_1 -> DateExpression_2

For example:

12\1\2010 -> 12\31\2010 // Will return TRUE if current date
// falls in the month of December, 2010

4.6 Statements

DCL statements are comprised of one or more expressions. Single line statements must end
with a semicolon (;). As will be seen, statements that can potentially contain other statements
are delineated with opening and closing brackets. This is to allow the compiler to “recover” at
the next statement after a syntax error. The DCL compiler ignores all source code “white space”
(spaces, tabs, and line feeds) so that single statements can be spread over multiple lines if
necessary to improve the readability of the DCL. With the exception of variable declarations
(covered in section 4.2.5), all statements must be part of a function (either user defined or
reserved). The overall CB file structure is described in more detail in section 4.10.1. This section
illustrates the various statement types in the DCL.

4.6.1 Assignment Statement

Assignment statements are used to assign a value to a specific variable. Numerous examples
have previously been presented. Valid examples include:

f = 12 + 3;
currentPos = valve1.getValuePercent();
t = hour():0:0;

4.6.2 Function or Object Method Call

If a function or an object method call does not return a value, the call itself is a statement.

// Function and Object Method calls as a statement
delay(10);
damper.setCommandPercent(50);

Note that if a user defined or built in function is supposed to return a value, but the compiler
finds the function call on a line by itself, CB compilation will fail. Functions that return a
value must be used in an expression or as part of an assignment statement.

Page | 97

4.6.3 If-else Statement

If-else statements are used for branching the flow of program execution into two paths. If
statement syntax is as follows:

if (boolean expression)
{

statements;
}

If combined with else:

if(boolean expression)
{

statements;
}
else
{

statements;
}

All statements enclosed in the braces are considered to be part of the if or else clause. Note
that in order to encourage the use of the switch-case statement (section 4.6.6), an “else-if”
construct is not provided.

4.6.4 for Statement

For statements can be used when the number of looping iterations are known. Examples of
this include iterating through an array. The syntax of for statements is as follows:

for (initialization; boolean expression; increment)
{

statements;
}

The initialization is an assignment statement that is used to initialize the loop control
variable. The boolean expression determines when the loop stops. The increment defines
how the loop control variable changes each time the loop is executed. Again, braces are
used to indicate the beginning and end of for loops. The following are valid examples of for
statements:

// j starts at 0, increment j by one each time thru loop, stop
// before j reaches 10
for(j = 0; j < 10; j = j + 1)
{

statements;
}

// j starts at 10, decrement j by 2 each time through loop, stop
// after j = 0
for(j = 10; j >= 0; j = j – 2)
{

statements;
}

Note that the increment and decrement operators (++ and --) can be used on the increment
expression to save typing as follows:

Page | 98

// j starts at 0, increment j by one each time through loop,
// stop before j reaches 10
for(j = 0; j < 10; j++)
{

statements;
}

4.6.5 while and do-while Statement

A while statement performs some action “while” a certain condition remains TRUE. The
general syntax of the while statement is:

while(boolean expression)
{

Delay(5)
statements;

}

The reader should now be familiar with the curly brace demarcation of the statement. The
do-while is similar. However, the conditional test is performed at the end of the loop rather
than at the beginning. Thus, a do-while loop will always be executed at least once.

The syntax of the do-while loop is:

do
{

statements;
} while (boolean expression);

Note the semi-colon required at the end. A concrete example that includes a while and a
do-while loop is as follows:

while (j < 10)
{

do
{

k = j + 1;
} while(k < 20); // End of do-while
j = j + 1;

} // End of while !

4.6.6 switch-case Statement

A switch-case statement is intended to replace multiple if - else if statements in order to
improve program legibility and understanding. Note that DCL switch-case statements differ
from normal C / C++ / Java syntax in that a Boolean expression is evaluated at each case.

The basic syntax of a DCL switch-case statement is as follows:

switch
{

case (boolean expression1)
{

statements; // If expression1 is true
break;

}
case (boolean expression2)

Page | 99

{
statements; // If expression2 is true
break;

}
default
{

statements; // If all preceding expressions are
// false

}
}

Note that any number of case clauses can be included and that unlike C / C++ and Java, a
colon is not necessary after the boolean expression or the default statement. The
parenthesis around the boolean expressions may also be omitted if desired.

The default clause enables the triggering of some default action if all the preceding case
clauses are FALSE. If the break statement is omitted within a case, then program execution
will continue with the next case statement that evaluates TRUE. If the break statement is
included as shown, program execution will jump out of the switch statement. The following
example illustrates these points.

switch
{

case (OutsideAirTemp < 70)
{

AH1_Economizer.activate();
// No more cases evaluated
break;

}
case (OutsideAirTemp < 20)
{

// With the preceding switch statement,
// program execution will never reach here
AH1_Economizer.deactivate();

}
default
{

; // No Op
}

} // End switch

In the preceding example, the program will exit the switch-case statement if the first case
statement is TRUE and execution never reaches the second case statement. In this particular
instance, it would have been better to reverse the order of the case statements.

4.6.7 stop Statement

A stop statement causes the CB to stop execution unconditionally. Its state will then remain
stopped until activated or resumed by another CB, or until activated, resumed or restarted
by a user. Its syntax is simply:

stop;

This could be used to stop CB execution if some error condition arises. For example:

while(TRUE)

Page | 100

{
// normal code
if (failure_mode == TRUE){stop;}
// more normal code

}

4.6.8 break Statement

The usage of the break statement has already been shown in conjunction with the switch-
case statement. Basically, a break statement causes program execution to leave the
immediate surrounding for, while loop, do-while loop or switch-case statement and go to the
statement after the loop. For example:

// Note the break statement causes the loop to
// terminate if k > 10
while(j < 10)
{

k = -5 + j;
if (k > 10)
{

break;
} // End if

} // End while
k = 0; // Program will jump to here after break statement

4.6.9 continue Statement

A continue statement can be considered to be a special case of break. A continue statement
causes program execution to skip to the end of a for, while, or do-while loop and then
evaluates the conditional expression at the beginning of the loop. For example:

for(j = 0; j < 100; j = j + 1) // conditional expression
{

if (j / 10 = 0)
{

y = j;
continue;

} // End if
k = k + j;
z = k;

} // Program jumps to here after continue statement and then
// back to conditional expression at the top of the for
// loop. If a break statement had been used instead, the
// conditional expression would not be evaluated.

4.6.10 return Statement

A return statement is used to initiate a return from a user defined function (see section 4.7).
This statement can have one of two possible forms:

return(expression); // The function was defined as returning
// some value

return; // The function was defined as returning
// no value

The returned value used in the first form can be any valid expression. Valid examples
include:

return(10);

Page | 101

return(i);
return(command + 0.5);
return(min(x,y));

Note that in the last example, we are returning the result of the min() library function call
(section 4.8.1).

4.7 User Defined Functions

Statements within a CB are grouped into one or more functions. These functions can be
classified into two types:

 Reserved functions that can be invoked both from within the CB and externally by users and
other control blocks. These are: activate, resume, main, deactivate, and
shutdown.

 Those that can be invoked only from other functions within the CB. The general syntax of a
function is:

returnValue functionName(varType varName1, varType varName2 …)
{

// Local Variable Declarations
// Statements to do the work of the function
// Return Statement

} // End of function

The first item, returnValue, indicates what type of variable the function returns (if any). This
can be any primitive or object type variable. If the function does not return a value, then

returnValue is omitted.

The next item, functionName, is a valid identifier given by the programmer. This name can be:
activate, resume, main, deactivate, shutdown or some other valid identifier subject to
the same rules for naming variables.

Any arguments that will be passed to the function are included within the parenthesis. Each
argument is identified with a variable type and variable name. The variable type is necessary so
that the compiler can check these types against any subsequent calls to this function from other
functions. Variable type can be any primitive or object type. If the function does not take any
arguments, then the space between the parentheses are left blank.

A simple example will help clarify the preceding discussion.

// This function called “adder” adds two floats and returns the
// result as a float
float adder(float x, float y)
{

return (x + y);
}
// “adder” is called from main() function
main()
{

// Some code
result = adder(2.3, z);
// Some more code

}

Page | 102

In this simple example, the function “adder” has been defined. It takes two floating point
arguments and returns a floating point value. In function “main”, the “adder“ function is
called with arguments 2.3 and z. The return value of the function is then assigned to the
variable called result.

Note that the five reserved functions (activate, resume, main, deactivate, and shutdown)
do not return any values nor do they need any arguments.

Since DCL supports mixed mode arithmetic, the preceding code will compile successfully even if

the arguments to adder were integers or booleans. Essentially, any integer or boolean
arguments would have been “promoted” (or cast) to floating point values as part of the function
call. Similarly, a bool will be “promoted” to an integer if an integer is expected as a function
argument. However, when passing times, dates, and objects, the argument type must match
the function definition exactly. For example, passing an AO object to a function that expects an
AI will not compile.

4.7.1 Local Function Variables

Any local variables must be declared before any other statements within the function.
Therefore, the following function definition will not compile successfully.

main()
{

int i = 1; // Variable definition ok
i = i + 1; // Valid statement
AI a; // ERROR: variable declaration
// out of place, it should be before other statements

}

4.7.2 Before Calling Functions

Any function definition that is not one of the five predefined functions (i.e., activate(),
resume(), deactivate(), shutdown(), and main()) must come before any calls are
made to the function. For example, the following code will not compile:

// This will not compile!
main()
{

// myFunction is called before its definition
myFunction();

}
myFunction()
{

// myFunction operations
}

The definition of myFunction must come before it is called.

// This will compile
myFunction()
{

// myFunction operations
}
main()
{

Page | 103

// myFunction is called before its definition
myFunction();

}

4.7.3 Function Parameter Passing

4.7.3.1 Primitive Variables

When passing non-array primitive type variables to functions, DCL uses a default
mechanism that is commonly known as “pass by value.” What this means is that the
contents of any variables passed to a function are not changed when the function returns.
The following example illustrates this point.

// This function attempts to swap two values but does not
// work as intended!
swap(float x, float y)
{

float temp; // local variable!
temp = x;
x = y;
y = temp;
return;

}
main()
{

float a = 1; // a and b declared with local scope
float b = 2;
swap(a, b); // swap called with a and b
// More operations on a and b

}

When swap returns from being called in main, a and b will still be set to their original

values (i.e., 1 and 2). Note that this is true even if a and b were declared with global
scope. While this may seem to be limitation in this particular example, there are other
instances where pass-by-value is indeed the desired behavior.

In order to obtain the desired effect with our “swap” function, DCL supports a second
parameter passing mechanism that is commonly referred to as “pass-by-reference.” Pass-
by-reference behavior is indicated by placing an ampersand (&) in front of the variable
name in the function declaration. In the preceding example, the intended behavior can
be achieved as follows:

// This function swaps two values using pass-by-reference
// behavior
swap(float &x, float &y)
{

float temp; // local variable!
temp = x;
x = y;
y = temp;
return;

}
main()
{

float a = 1; // a and b declared with local scope
float b = 2;

Page | 104

swap(a, b); // swap called with a and b
// More operations on a and b

}

Now when swap returns, the desired behavior will be achieved: a will be equal to 2 and b
will be equal to 1. Note that the same function can have both pass-by-value and pass-by
reference parameters. For example, the following function definition is perfectly valid.

doSomething(float &ductPress, int count)
{

// Code
}

In this example, any argument passed in for ductPress will be pass-by-reference,
whereas count will default to pass-by-value behavior.

4.7.3.2 Object Variables

In order to support code reuse, DCL also supports passing object variables as function
arguments. The syntax of passing object variables is entirely analogous to that of other
primitive variable types. For example, the following function requires two object
variables.

// Function which takes AI and AO object as arguments
genericLoop(AI measuredVariable, AO controlledVariable)
{

// Code
}

DCL always passes object variables as pass-by-reference. An ampersand is not required. If
the programmer places an ampersand in front of an object variable within a function
definition, the compiler will generate a warning, but the program will still compile.

// Function which takes AI and AO object as arguments
// Pass-by-reference ampersand on measuredVariable
// is not necessary and will generate warning
genericLoop(AI &measuredVariable, AO controlledVariable)
{

// Code
}

4.7.3.3 Arrays of Primitive and Object Variables

Individual array elements can be passed to functions as any other primitive or object
variable as discussed in the previous sections. DCL also supports the passing of entire
arrays as function parameters. The syntax required to pass an array is illustrated by the
following example.

// Array function parameter example
float averageTemp(AI temps[])
{

float total;
int i;
total = 0;
for (i = 0; i < arraySize(temps[]); i++)
{

total = total + temps[i].getValue();
}

Page | 105

return(total / arraySize(temps[]));
}
main()
{

// Variables and code
ave = averageTemp(temps[]);

}

Note the syntax required to define an array parameter and to pass an array argument are
identical: arrayVariableName[].

The built-in library function arraySize (section 4.8.6) can be used to get the size of any
arrays and is therefore very useful when used in conjunction with for loops. The above
example illustrates the ability of DCL to facilitate code reuse in that the function
averageTemp is generic. Users can pass in an AI array of any size that represents any
combination of AI objects in the system and the function will compute their average
value.

If the function definition calls for an array parameter but the function call does not
provide one, or vice-versa, the program will not compile.

// Will not compile since function requires an array but
// function call does not provide one!
someFunction(float a[])
{

// Code
}
someOtherFunction()
{

// Variable declarations and code
//someFunction is called without array argument
someFunction(value);

}

Arrays are always passed in DCL using pass-by-reference behavior. Similarly, an
ampersand is not required. If a user places an ampersand in front of an array function
parameter, a compiler warning message will be generated but the program will compile
successfully.

4.8 Library Functions

This section describes several “built-in” or library functions which are supported by DCL.

4.8.1 Math Functions

abs(float), abs(int)

Returns the absolute value of a floating point or integer number. The type returned (float or
int) is the same as the argument type.

max(float, float, int, …), max(int, int …), max(arrayName[])

Returns a floating point or integer value that represents the largest of a list of floating point
or integer numbers. Mixed lists are allowed, but in this case the function will return a
floating point value. Note that a single float or integer array can be passed as an argument.
The function will then return the maximum value of the array. However, a mixed list of
individual numbers and one or more arrays is not allowed.

Page | 106

min(float, float, int, …), min(int, int …), min(arrayName[])

Returns a floating point or integer value that represents the smallest of a list of floating point
or integer numbers. Mixed lists are allowed, but in this case the function will return a
floating point value. Note that a single float or integer array can be passed as an argument.
The function will then return the minimum value of the array. However, a mixed list of
individual numbers and one or more arrays is not allowed.

ave(float, float, int, …), ave(int, int …), ave(arrayName[])

Returns a floating point or integer value that represents the average of a list of floating point
or integer numbers. Mixed lists are allowed, but in this case the function will return a
floating point value. Note that a single float or integer array can be passed as an argument.
The function will then return the average value of the array. However, a mixed list of
individual numbers and one or more arrays is not allowed.

ln(float)

Returns a floating point value that represents the natural logarithm (base = e) of a floating
point argument. Note that the exponentiation operator can be used as the inverse of ln().

// ln() and exponentiation
const float E = 2.718;
float f;
float g;
g = ln(12);
// Now we can get make f = 12
f = E ^ g;

4.8.2 Flow Control Functions

delay(float)

Delays the program execution for a specified number of seconds. All DCL programmers
should be fully aware that delay functions implicitly impose priorities among the control
blocks on the same hardware platforms. Those control blocks with high delays have an
implied lower priority than those control blocks with short delays. A continuously running CB
will typically have a while statement with a delay function call as follows:

while (TRUE)
{

// Do some stuff
delay (10); // Delay 10 seconds

}

4.8.3 Status Functions

getIOErr()

Returns an integer value that is representative of the current I/O error condition flag.
Returns zero (i.e., FALSE) if there is no error. Error conditions are enumerated values that
represent a particular I/O error condition. These allow the programmer to take different
actions within the control block based on the particular error condition.

getStatus()

Page | 107

This gets the status of the calling control block. The value returned is an enumerated value.
This is similar to using the getStatus() object method call discussed in section 4.2.9.1.
However, no object variable is required.

setStatus(status)

This sets the status of the of the calling control block to an enumerated value. This is similar
to using the setStatus() object method call discussed in section 4.2.9.1. However, no
object variable is required.

4.8.4 Time and Data Functions

Note that all time and data functions return integer values except for weekday functions.
Weekday functions return Boolean type values.

systime()

Returns an integer time value which represents the current system time.

hour()

Returns an integer (0 – 23) that corresponds to the current hour.

minute()

Returns an integer (0 – 59) that corresponds to the current minute.

second()

Returns an integer (0 – 59) that corresponds to the current second.

sysdate()

Returns a Date value which represents the current system date.

month()

Returns an integer (1 - 12) that corresponds to an enumerated value for the current month
of the year (i.e., JAN, FEB, MAR, etc.)

day()

Returns an integer (1 - 31) that corresponds to the current day of the month.

year()

Returns an integer that corresponds to the current year.

sun(), mon(), tue(), wed(), thu(), fri(), sat()

These each return a boolean (TRUE/FALSE) based on the condition:

sun(); // TRUE if today is Sunday, FALSE otherwise
mon(); // TRUE if today is Monday, FALSE otherwise
etc. . .

Page | 108

4.8.5 Reporting Functions

report(severity, . . .)

This “reports” to the calling control block. Its usage is identical to the object method call
discussed in section 4.2.9.1. However, no object variable is required since the implied
recipient is the calling control block. If the calling control block is subsequently displayed at
the EMCS user interface, the last written “report” values are displayed. This function can be
thought of as a “print” statement for the control block.

4.8.6 Array Functions

arraySize(array name)

This function returns the number of declared elements in an array. It is useful when included
as part of loop constructs and when passing arrays to user defined functions.

// Declare and array of 10 AO elements
AO speedControl[10];

// Other code

// This loop will execute 10 times since speedControl is a 10
// element array i will be incremented from 0 to 9!
for (i = 0; i < arraySize(speedControl[]); i++)
{

// code
}

4.9 Compiler Directives

DCL provides the capability to embed certain instructions to the compiler within the source
code. These instructions are referred to as compiler “directives” and are discussed in this
section. All such directives are preceded with the “pound” sign (#).

4.9.1 #include

The included directive provides DCL with the capability for control block reuse. Reusable or
library type control blocks can be developed with generic code that can be combined into
larger control blocks. The syntax of this directive is as follows.

// Include directive syntax. Note no semicolon is used.
#include [building.system.subsystem.object]

Note the object acronym has the same form as that used in the object variable definitions
discussed in section 4.2.5.2. The rationale for reusable control blocks and the mechanism by
which they are achieved can best be illustrated by an example.

Suppose we want to develop a “library” type function that computes the average value of an
array of Analog Inputs (e.g., average outdoor air temperature). Suppose that the control
block called UNL.LIB.AI.AVE has been defined for this purpose and it contains the
following code.

// [UNL.LIB.AI.AVE] Library function
float aiAverage(AI aiArray[])
{

int i;

Page | 109

float average;
average = 0;
for (i = 0; i < sizeof(aiArray); i++)
{

aiAverage = aiAverage + aiArray[i].getValue();
}
aiAverage = aiAverage / sizeof(aiArray);
return (aiAverage);

}

The function aiAverage() takes an array of AI objects, computes their average value, and
returns this value as a float. Note that the function is self contained in that it does not
require any information about what the objects represent, the size of the actual array, etc. It
is therefore a good candidate for reuse.

Suppose we had a second control block where we would like to use this
aiAverage()function. We could do this as follows.

// Include aiAverage() function definition by compiler
// directive.
// Notes:
// 1) The definition should be included before the actual
// function is called.
// 2) The #include directive used in this manner must be
// located outside of function definitions
#include [UNL.LIB.AI.AVE]

..

Statements; // Other code

..

// Call aiAverage function from within second control block
// at any place after the #include directive
ave = aiAverage(freshAirTemp[]);

When the compiler hits the #include directive, it “copies-and-pastes” the source code of
UNL.LIB.AI.AVE into the second control block at the exact location of the directive. Any
function defined with the “included” control block is thus able to be used. In order to
promote code maintenance, the preferable location for #include directives is directly after
the global scope variable declarations (see section 4.2.2).

4.10 Control Block Structure

4.10.1 Elements of a Control Block

A valid control block is comprised of the following elements:

 Zero or more global variable declarations. These are declared outside of any functions
and therefore have global scope (section 4.2.2). A control block will still compile if there
are no global variables declared.

 Zero or more #include directives.

 One or more user function definitions. Note that at least one function is required or the
control block will not compile. If only one function is defined, it should be one of the five

Page | 110

pre-defined function names (activate, deactivate, resume, shutdown or main).
Since the control block has no defined entry point, it will otherwise never run.

A typical control block will have a main function and perhaps one or more other functions.

The following control block layout is suggested:

// Control block documentation comments
// See commenting standard in the Appendix
// Global variable declarations. All variables have global
// scope!
int j, k;
float f;
AI myAI = [Building.System.SubSystem.Object];

// User defined functions
// User function documentation comments
// See commenting standard in the Appendix
myFunction1()
{

// Local variables needed
int j, k;
time t;

statements;

}

// User function documentation comments
// See commenting standard in the Appendix
myFunction2()
{

statements;
}

// Activate and resume
activate()
{

statements; // If activated.
}

resume()
{

statements; // If resumed.
}

// The main function.
main()
{

// Infinite while loops go here.
while(TRUE)
{

// Call myFunctions.
myFunction1();
myFunction2();
if (failure_mode = severity_8)
{

Page | 111

shutdown();
}
if (failure_mode >= severity_9)
{

stop;
}
// Delay 1 minute between iterations.
delay(60);

} // End of infinite while loop.
} // End of main().

// Deactivate and shutdown
deactivate()
{

statements; // If deactivated.
}

shutdown()
{

statements; // If shutdown.
}

All functions, including the five predefined types (i.e., activate, resume, deactivate,
shutdown, and main) can be listed in any arbitrary order if they exist in the CB. However,
user functions must be defined before they are called. If the definition for myFunction1 in

the above example had been listed after main, the control block would not have compiled
since myFunction1 is called from main before it is defined.

4.11 DCL Editor

The DCL editor is a component of Digi-SFT used for editing, compiling, and downloading control
blocks to controllers.

Page | 112

Figure 43 - DCL Editor Window

The #include directive will appear as “+include”. Click on the plus (+) symbol to open the
referenced file in a read-only window. The #including will appear as “-include”. Click on the
minus (-) symbol to close the referenced file.

4.11.1 Menu

The pull-down menus from the DCL Editor include File, Edit, and Help. The menu commands
are described below.

4.11.1.1 File

The file menu provides commands for managing DCL control block files.

Page | 113

Figure 44 - File menu in the DCL Editor Window

 Open 4.11.1.1.1

The Open command allows users to open a control block by entering the four part
alpha-numeric acronym assigned to the object. If users enter an acronym that does
not exist, the EMCS Object Selector Dialog window will remain open to allow you to
enter an existing acronym for a control block object. If the acronym you enter is not
associated with a control block object, an error message will appear, “Incorrect object
type selected.” The EMCS Object Selector Dialog window will remain open to allow
users to enter an existing acronym for a control block object.

 Close (All) 4.11.1.1.2

The Close command closes the control block displayed in the active editor window
without saving the changes.

 Save 4.11.1.1.3

The Save command saves the control block source code displayed in the active editor
window without compiling the source code.

Page | 114

 Compile and Save 4.11.1.1.4

Compile and Save saves the control block source code displayed in the active editor
window to the system database. It then compiles the source code, saves it in the
database, and downloads it to the host controller.

 Revert 4.11.1.1.5

Revert undos changes that were made since the last compile. Note that when using
Revert any changes made since the last compile will be lost. There is no redo
command under the File menu.

 Print 4.11.1.1.6

The Print command opens a print dialog box for modifying the print settings. It allows
users to print the control block source code in the active window to the selected
printer.

 Exit 4.11.1.1.7

The Exit command prompts users to save their work and close the DCL Editor.

4.11.1.2 Edit

The edit menu provides commands for editing the DCL source code in the DCL Editor.

Figure 45 - Edit Menu in the DCL Editor Window

Page | 115

 Undo 4.11.1.2.1

The Undo command will remove the last changes made to the source code, one
change at a time, and in order of the most recent change.

 Redo 4.11.1.2.2

The Redo command adds the changes to the DCL source code removed using the Undo
command. This is done one change at a time in the order of the most recent Undo.

 Cut 4.11.1.2.3

Cut deletes the selected text from the DCL Editor window and saves a copy of the text
in the Windows Clipboard so that it can be pasted in another location, file, or
application.

 Copy 4.11.1.2.4

Copy saves the selected text from the DCL Editor window to the Windows Clipboard.
The copied text can then be pasted to another location, file, or application. The
original selected text in the DCL Editor window is not deleted.

 Paste 4.11.1.2.5

Paste inserts text from the Windows Clipboard to the DCL Editor window. The text will
be inserted after the position where the cursor is located.

 Select All 4.11.1.2.6

Select All will select all of the text in the active DCL Editor window.

 Find 4.11.1.2.7

Find opens a Find and Replace window. The Find command searches the current DCL
Editor window for text input into the “Find what” field. The search will be performed
starting where the cursor is currently located in the DCL Editor window.

 Replace 4.11.1.2.8

Replace opens a Find and Replace window. The Replace command searches the
current DCL Editor window for the text input into the “Find what” field. That text will
be deleted and text input into the “Replace” field inserted in its place. The search will
be performed starting where the cursor is currently located in the DCL Editor window.

 Perform #include Dependency Check 4.11.1.2.9

The #include Dependency Check queries the database for any other control blocks that
reference the current control block with the #include directive. A window will open
listing all of the control blocks that reference the current control block with the
#include directive. The object acronym and compile message is displayed for each
control block.

4.11.1.3 Help

The help tab under the DCL Editor opens the DCL Manual document that describes how to
use the Distributed Control Language.

Page | 116

4.11.2 Tool Bar

The toolbar includes commonly used commands in the DCL Editor. They function the same
as the commands available in the pull-down menus. The toolbar commands are shown
below. See section 4.11.1 for a discussion on how to use the commands.

Figure 46 - Tool Bar in the DCL Editor Window

4.11.3 Pop-Up Menu

Open a control block and click the right mouse button to view the pop-up menu in the DCL
Editor.

 Revert

 Print

 Cut

 Copy

 Paste

 Open

 Save

 Compile and Save

 Undo

 Redo

 Find

 Replace

 Perform #include Dependency Check

 Font Style

 Font Size

Page | 117

Figure 47 - Pop-up menu in the DCL Editor Window

4.11.3.1 Cut, Copy, Paste

The cut, copy, and paste commands function the same as in the edit menu; see sections
4.11.1.2.3, 4.11.1.2.4, and 4.11.1.2.5, respectively.

4.11.3.2 Insert EMCS Object

EMCS objects can be used and manipulated by control blocks as described in sections
4.2.4 and 4.2.9. The syntax used to reference an object is, for example:

[Building.System.Subsystem.Object]

Recall that this represents the complete four-part acronym of the object defined in the
EMCS user interface during object creation. Selecting to insert an EMCS object from the
pop-up menu will automatically create this syntax in a control block. A prompt will
appear asking for the four-part acronym.

4.11.3.3 Insert EMCS Constant

There are predefined constants that are available for use in a control block algorithm.
The constants are categorized into 6 sections: Status, User Settable Status, Lock/Key,
Undefined Primitives, Report Severity, and CB or Loop State. See section 14.3 for more
details on the available constants. A constant can be inserted into a control block by
selecting the constant from a list in the pop-up menu in the DCL Editor.

Page | 118

4.11.3.4 Insert Flow Control Skeleton

A template or skeleton of certain DCL code statements will be inserted into a control
block in the DCL Editor by selecting to insert a flow control skeleton from the pop-up
menu. This includes the following statements:

 if (see section 4.6.3)

 if..else (see section 4.6.3)

 for (see section 4.6.4)

 while (see section 4.6.5)

 do..while (see section 4.6.5)

 switch (see section 4.6.6)

4.11.3.5 EMCS Object Methods

The methods that are available to manipulate control blocks are described in section
4.2.9. They can be inserted into a control block in the DCL Editor by selecting the EMCS
object method from the pop-up menu.

 They are listed here for reference:

 AI
o getStatus()
o setStatus()
o report()
o getValue()

 AO
o getStatus()
o setStatus()
o report()
o getValuePercent()
o getValueEU()
o getCommandPercent()
o getCommandEU()
o setCommandPercent()
o setCommandEU()
o getLock()
o setLock()

 DI
o getStatus()
o setStatus()
o report()
o getValue()

 DO
o getStatus()
o setStatus()
o report()
o getValue ()
o getCommand()

Page | 119

o setCommand()
o getLock()
o setLock()

 CB
o getStatus()
o setStatus()
o report()
o getInput()
o setInput()
o getOutput()
o getLock()
o setLock()
o getKey()
o setKey()
o getState()
o activate()
o resume()
o deactivate()
o shutdown()

 LOOP
o getStatus()
o setStatus()
o report()
o getInput()
o setInput()
o getOutput()
o getLock()
o setLock()
o getKey()
o setKey()
o getState()
o activate()
o resume()
o deactivate()
o shutdown()

 HIST
o history()
o getLastValue()

 ALARM
o trigger()

 HW
o getStatus()
o report()

4.11.3.6 Insert Built-In Function

Functions can be inserted into a control block in the DCL Editor by selecting to insert a
built-in function from the pop-up menu. Functions are categorized as math, flow control,

Page | 120

status, time/date, report, and array (see below). See section 4.8 for more information
about the built-in library functions.

Figure 48 - Built-in functions in the DCL Editor Window

 Math
o abs()
o max()
o min()
o ave()
o ln()

 Flow Control
o delay()

 Status
o getIOErr()
o getStatus()
o setStatus()

 Time/Date
o systime()
o hour()
o minute()

Page | 121

o second()
o sysdate()
o year()
o month()
o day()
o sun()
o mon()
o tue()
o wed()
o thu()
o fri()
o sat()

 Report
o report()

 Array
o arraySize()

4.11.3.7 Insert Function Skeleton

A template or skeleton of a function will be inserted into a control block in the DCL Editor
by selecting to insert a function skeleton from the pop-up menu.

Page | 122

Figure 49 - Function Skeleton in the DCL Editor Window

4.11.3.8 Insert Control Block Code Skeleton

Insert a template or skeleton of an entire control block into a control block in the DCL
Editor by selecting to insert a control block code skeleton from the pop-up menu.

Figure 50 - Control block skeleton in the DCL Editor Window

4.12 Schedule Editor

Digi-SFT provides a schedule object so that users can schedule events. Users define the
particular days (weekdays, weekends, and holidays) that events occur. The Schedule Editor is a
tool used to modify a schedule object. This section describes the various features provided by
the Schedule Editor.

Right clicking on a schedule object in the Grid display and selecting the Edit Control Block/
Schedule menu item opens the Schedule Editor as shown in the figure below.

Page | 123

Figure 51 - Schedule Editor Window

4.12.1 Menu

The pull-down menus from the Schedule Editor display the File, Settings, and Master
Schedule. The menu commands are described below.

4.12.1.1 File

The file menu provides commands for managing the schedule.

Page | 124

Figure 52 - File menu in the Schedule Editor Window

 Save and Compile 4.12.1.1.1

Save and Compile will first save the schedule to the system database. Then the source
code is compiled and the compiled code is saved in the database and downloaded to
the host controller.

 View Source 4.12.1.1.2

A schedule is a type of control block that the DCL automatically generates by the
Schedule Editor. When users select to view the source code, the DCL source code for
the schedule is shown in a read-only window.

 Exit 4.12.1.1.3

This option closes the Schedule Editor.

Page | 125

4.12.1.2 Settings

Figure 53 - Settings Menu in the Schedule Editor Window

 Default Status 4.12.1.2.1

Without explicitly declaring the default schedule status, a schedule uses the default
schedule status of STATUS_OFF. The default status can be changed to any of the
following using the Default Status command from the Settings menu.

STATUS_CYCLE_PUMPS
STATUS_DAY
STATUS_DEADBAND
STATUS_DEADBAND_NO_REHEAT
STATUS_DEFROST
STATUS_EXTERNAL_RESET
STATUS_HIGH_SPEED
STATUS_INTERNAL_RESET
STATUS_LOW_SPEED
STATUS_MANUAL
STATUS_MANUAL_OVERRIDE
STATUS_NIGHT
STATUS_NORMAL
STATUS_NORMAL_NO_REHEAT
STATUS_NULL_POINT

Page | 126

STATUS_OCCSENS
STATUS_OFF
STATUS_ON
STATUS_RUN_BOTH_PUMPS
STATUS_RUN_PUMP1
STATUS_RUN_PUMP2
STATUS_STAFF_HOLIDAY
STATUS_STUDENT_HOLIDAY
STATUS_SUMMER_DEADBAND
STATUS_SUMMAR_NORMAL
STATUS_TEMP_OCCUPIED
STATUS_UNOCC
STATUS_WINTER_DEADBAND
STATUS_WINTER_NORMAL
STATUS_WINTER_SHUTDOWN

 Iteration Frequency 4.12.1.2.2

The execution of the program can be set to a fixed rate by choosing the iteration
frequency as 10, 20, 30, 60, 120, 240, or 300 seconds. This is achieved using the
delay() function. See Section 4.8.2 for more information.

4.12.1.3 Master Schedule

 Add or Remove Master Schedule 4.12.1.3.1

A master schedule is a schedule used to define the schedule status for all schedules
that reference it as the master schedule. Although there can be more than one master
schedule in the system, only one master schedule can be referenced per schedule.
The master schedule must be defined as a virtual object.

When a new schedule object is created, Add Master Schedule shows in the menu.
When you choose to add a master schedule, an EMCS Object Selector Dialog box will
prompt you to type in the four part acronym of the mater schedule.

When opening the existing schedule, Remove Master Schedule shows in the menu
instead of the Add Master Schedule. Click on it to remove the master schedule.

 Perform Dependency Check 4.12.1.3.2

A dependency check will produce a list of schedules that reference the current
schedule as a master schedule. If the master schedule is modified, the schedules with
a dependency can be compiled to reflect the changes. This is done by first selecting to
perform a dependency check. Then select one or more schedules from the list of
schedules with a dependency, right-click, and choose to compile the control block.
Hold down the <Shift> or <Ctrl> key while selecting objects to select multiple
schedules.

4.12.2 Calendar Pop-Up menu

Right click on the Calendar to open the Calendar pop-up menu.

Page | 127

Figure 54 - Calendar Pop-up Menu in the Schedule Editor Window

4.12.2.1 Change Day Type for DATE

The day of a selected date can be changed to Weekend, Holiday, Weekday or other day
types as defined in the Day Type window (see Add Day Type in section 4.12.3.1)

4.12.2.2 Change Day type for all

All Day of Week can be changed to any predefined day type.

4.12.2.3 Change to default Day of Week

The default Day of the Week is the actual day of that date.

4.12.2.4 Add Special Event

Click on Add Special Event to add a special event to the special events window on the
right as shown in the above figure. To edit the time or day of a special event, double click
on the day start time and end time.

4.12.3 Day Type Pop-Up Menu

Right clicking on the “Weekend”, “Holiday”, or “Weekday” field opens the day type pop-up
menu.

Page | 128

4.12.3.1 Add Day Type

Using Add Day Type, a new day type will be added to the Day Type. For example, if the
user wants to add a Rainday day type, the following procedure should be followed: When
the user types Rainday in the pop-up input window, Rainday will be added to the Day
Type window. Another day type can then be selected in the calendar.

4.12.3.2 Delete Selected Day Type

Click the delete selected Day Type to delete it.

4.12.3.3 Day Type Transition Pop-Up Menu

Right click on the transition window area to open the pop-up menu.

4.12.3.4 Delete Selected Transition

Click to select the transition time and use the Delete Selected Transition option in the
pop-up menu to delete the selection.

4.12.3.5 Add New Transition

Click the transition time window (the gray area) to add a new row for the transition time.
Double click the transition time to edit the time.

4.12.4 Status Pane

The status pane displays the current transition status, for example, STATUS_ON, as shown in
the following figure. Double-clicking on the selected transition status reveals the status pane
containing a drop-down field. The status can then be changed.

4.12.5 Transition Time Pane

The transition time pane displays the current transition time value, for example 0:0:0, as
shown in the following figure. Double-clicking on the selected transition time reveals the
transition time pane containing hour, minutes and seconds selector fields. The transition
time can then be changed.

5 Using the Graphics Editor (Admin Only)

5.1 Introduction

Composer is a graphics editor that allows users to create images and link them with EMCS
objects for the purpose of monitoring and controlling the EMCS system from a system
illustration. Figure 55 provides an example of a simple graphic of an air handler unit with
various EMCS objects, such as analog inputs, analog outputs, and control blocks. Most of these
objects are associated with actual hardware with real-time values displayed on the illustration
to allow users to control the hardware from the graphics.

Page | 129

Figure 55 - Sample Graphics

5.1.1 Requirements

To create, and edit graphics using Composer, the path to the graphics server needs to be
mapped as a network drive to your computer. Only user as admin will be able to see the
button to invoke Composer. For more information see section 5.2.1.

5.1.2 Additional Documentation

More information is available on this topic in the ILOG Composer Manual.

5.2 Setup

Before using the graphics editor, Composer, the area network drive needs to be mapped with
the path to the graphics server. Then, the prototype libraries need to be loaded.

5.2.1 Mapping a Network Drive

A network drive needs to be mapped to the graphics server to view, create, and edit using
Composer. The server IP address is needed to create a network drive for Digi-SFT. Contact
the network system administrator for the IP address.

1. Open “My Computer”
2. Open the “Tools” menu (skip this step in Windows 7)
3. Select “Map Network Drive”
4. Select a Drive, such as “J:”
5. In the Folder field box, type \\<IP ADDRESS>\EMCSGraphics, except replace <IP

ADDRESS> with the IP address of the server provided by your network system
administrator.

6. Select “Reconnect at login” so that the network drive will be mapped to the computer
at every login time.

7. Click “OK” or “Finish”. The new drive should open immediately.

Page | 130

5.2.2 Loading Prototypes

Images and symbols for common HVAC equipment are provided in graphics known as
prototypes. The prototypes are supplied so that users can insert them into graphics without
having to create their own images.

The first time that Composer starts on the user’s computer, the prototypes frame is
unoccupied. After the prototype libraries have been opened once, they will load
automatically into the prototype frame. To load the prototype libraries for the first time:

1. Select “File” from the Composer pull-down menu.
2. Select “Open”.
3. Select the network drive for EMCSGraphics, see section 5.2.1.
4. Select the “prototypes” folder.
5. Select the files with .ivl extension. Use the <Shift> key or <Ctrl> key to select multiple

files.
6. Click “Open”. The prototypes should be opened in the prototype frame.

5.3 File Management

When managing files with Composer, it is important to know where the files are saved and the
naming convention for the files. The Composer files are organized on the graphics server and
mapped to a network drive for EMCSGraphics. See section 5.2.1 for more information. The files
are named using the four part alpha-numeric acronym assigned to the object in Digi-SFT. Then,
the files are organized in directories that have the same name as the first part of the acronym.
For example, a graphic object with the acronym “bldg501.Chiller.Pump.Graphic” is named
“bldg501.Chiller.Pump.Graphic.ivl”. This file is saved in the directory “bldg501”.

5.3.1 Open

To open a graphics file in Composer,

1. Select “File” from the Composer pull-down menu.
2. Select “Open”.
3. Select the network drive for EMCSGraphics, see section 5.2.1.
4. Select the directory, for example “bldg501”.
5. Select the file with an .ivl extension, for example “bldg501.Chiller.Pump.Graphic.ivl”.
6. Click “Open”. The file should be opened.

5.3.2 Save

To save a graphics file in Composer,

1. Select “File” from the Composer pull-down menu.
2. Select “Save”.
3. Select the network drive for EMCSGraphics, see section 5.2.1.
4. Select the directory, for example “bldg501”. If the directory does not exist the user must

create it using the “Create New Folder” icon. See .
5. Type in the file name and include .ivl, and the file name extension; for example,

“bldg501.Chiller.Pump.Graphic.ivl”. Composer will not automatically add the file name
extension.

6. Click “Save”. The file should be saved.

Page | 131

5.4 Prototypes

5.4.1 Connecting a prototype to an object

1. Place a prototype on a new graphic by left clicking the prototype on the prototype
library toolbar, then clicking where it will be placed on the graphic.

2. Select the EMCSObjects prototype library.
3. Select the EMCS object to be used.
4. Place it in the graphic (this will be invisible when a user views the graphics, EMCS

objects are only visible in Composer).

Figure 56 - EMCSObjects prototype library

5. Right click on the EMCS object (without selecting it, because in that case the
popup-menu gets displayed).

6. Enter the EMCS acronym that the EMCS object is to represent.
7. Select the Connect tool (a green arrow connecting a red circle to a white one).
8. Drag a line between the EMCS object and the prototype it will control or be

controlled by.
9. Select the properties that will be connected (like the command valuePercent on

an AI and rotatePeriod on a fan prototype) from the available prototypes by
double clicking on the connecting line.

6 Alarm Manager

The alarm manager allows users to define, view, and acknowledge alarms.

Alarms are typically used to notify users of undesirable events or conditions. Several options for
communicating the alarms are provided, such as a visual and audible warning on a computer’s
desktop, email, or text page. Significant events or conditions that trigger an alarm are recorded as
archived data. An alarm must be acknowledged so that alarms cannot be missed or ignored.

Routing alarms to specific users and defining how they are routed are standard features of alarms.

6.1 Defining Alarms

The first step in setting up an alarm is to create the alarm object. Open the grid display, select
the grid options you prefer, and search. Then select one or more of the objects from the filtered
list of objects displayed in the grid display, right-click, and the pop-up menu will appear. Then
choose to create a new object. The object definition window will appear and provides you the
ability to edit the settings of an object.

For example, use the acronym MyBldg.Sys_A.SubSys_1.MyAlarm and select “Alarm” as the type
of object. See section 3.2 for more information.

Next, the alarm object is referenced in a control block and custom logic is used for triggering the
alarm. For example, see the DCL algorithm below. See section 4.2.9.8 for more information.

ALARM myAlarm = [MyBldg.Sys_A.SubSys_1.MyAlarm];
.
.
.
main()

Page | 132

{ .
 .
 if (output > 100)
 {
 myAlarm.trigger(1, "Output > 100. output = ",output);
 }
 if (output < -100)
 {
 myAlarm.trigger(0, "Output < -100. output = ",output);
 }

.

.
}

6.2 Viewing Alarms

When an alarm is triggered, the alarm will be automatically routed to the specific users listed as
the alarm users. Users are notified with an alarm window. Users may also open the alarm
window at any time to view the active alarms. An active alarm is a triggered alarm in which the
conditions that caused the triggering still exist. If an alarm has not been acknowledged,
notification of the alarm will reoccur at the repeat frequency until the alarm has been
acknowledged. If the notification exceeds the number of tries to cascade, the alarm is escalated
by cascading or triggering another alarm object.

The alarm window displays a list of all active alarms with the following information:

 The date and time the alarm was first triggered

 The reporter object acronym and control block object that triggered the alarm

 The alarm object acronym

 The alarm string; a message provided when the alarm is triggered

 The number of times the user list has been notified that the alarm has been triggered

 The date and time of the last notification that the alarm was triggered

 Indicates if the alarm has been acknowledged

The alarm window has an option to mute the sound.

The alarm window has the ability to filter alarms or hide alarms based on whether or not they
have been acknowledged.

Page | 133

Figure 57 – Alarms window

6.3 Acknowledging Alarms

When an alarm is triggered, the user is automatically notified with an alarm window at the
repeat frequency until the alarm has been acknowledged or the conditions that triggered the
alarm no longer exist. The alarm window displays a list of all active alarms and provides options
to view and acknowledge current alarms.

Acknowledge an alarm by double clicking on a specific alarm in the alarm window and opening
an alarm acknowledgement window.

The alarm acknowledgement window displays:

 The alarm object acronym

 The reporter object acronym (the control block object that triggered the alarm).

 The date and time the alarm was first triggered

 The date and time of the last notification that the alarm was triggered

 The number of times the user list has been notified that the alarm has been triggered

 The number of times the alarm was triggered due to a reoccurrence of the condition

 The user ID used to acknowledged the alarm

 The date and time the alarm was acknowledged

 The alarm status

 The alarm string

Page | 134

Figure 58 - Alarm Details window

A snooze time needs to be provided when acknowledging the alarm. The alarm does not notify
a user during the snooze time when the alarm was acknowledged. If the problem that triggered
the alarm still exists and the snooze time has been exceeded, the user notification resumes. The
alarm acknowledgement window provides options that allow users to define the length of the
snooze time in terms of the

 minutes, hours, or days

 selected start and end time and date

The alarm acknowledgement window includes a field for users to enter a description about the
acknowledgement.

Page | 135

6.4 Get Archived Data

An alarm represents a significant event or condition in the EMCS, so the instance is recorded as
archived data. To view the archived data for an alarm, open the grid display, select the grid
options you prefer, and search. Then select one or more of the alarm objects from the filtered
list of objects displayed in the grid display, right-click, and the pop-up menu will appear. Then
choose to get the archive data. An archive data window will allow you to select the date range
to retrieve the alarm data and choose to get data to load the data in the window. The following
information will be presented:

 The date and time the alarm was first triggered

 The reporter object acronym, the control block object that triggered the alarm

 The alarm string (a message provided when the alarm is triggered)

 The number of times the alarm was triggered due to a reoccurrence of the condition

 The number of times the user list has been notified that the alarm has been triggered

 The user ID used to acknowledge the alarm

 The date and time the alarm was acknowledged

 The acronym of the cascade alarm

Figure 59 – Alarm Archive Data window

Selecting the "Save to Disk" command on the Archive Data window will save the data to a
comma-separated value text file. The file can be opened with a text editor or spreadsheet
program.

7 Trend Manager

The Trend Manager provides two methods to plot trended data: Real Time Plot and Trend Plot.

7.1 Trend Plot

The Trend Plot function allows users to graph the data of one or multiple objects. After trend
enable gets selected and the trend frequency and trend purge interval are set up in the Field
Definition window (See sections 3.4.1.3, 3.4.1.4 and3.4.1.5), the object data is automatically
trended.

To display data in the Trend Plot window:

Page | 136

1. Right click the selected object or objects in the Grid Display window. A pop-up menu
appears.

2. Click the Trend Plot command in the pop-up menu.

Figure 60 - Trend Plot in the Grid Display Window

Page | 137

Figure 61 - Trend Plot Window

7.1.1 Data Sources

There are two commands in the Data Source menu:

1. Add Data Source
2. Edit Data Source

7.1.1.1 Add Data Source

Data of more than one object can be plotted.
Click on Add Data Source to open the EMCS Object Selector Dialog window (Figure 62) in
order to add the object data to be displayed in the Trend Plot window:

1. Type the object acronym
2. Click the OK button to confirm the selection or the Cancel button to void the

selection

Figure 62 - EMCS Object Selector Dialog

Page | 138

7.1.1.2 Edit Data Source

The Trend Plot window can display the following attributes of an object:
1. Command or input value
2. Feedback or output value

Users can select the attribute or attributes to be plotted. The data of different attributes
are plotted in different sub-windows. The Edit Data Source window is used to allocate the
data to the selected sub-window. See section 7.1.1.2.1, 7.1.1.2.2 for details.

Figure 63 - Edit Data Source Window

 Cmd/Input Plot Number 7.1.1.2.1

The Cmd/Input Plot Number determines whether the command or input data of an
object as shown in the Object Acronym column is plotted. It also assigns the number
or name of the plot window of the plotted attribute.

The plot window number, or window name (section 7.1.2.2) is selected from the scroll-
down menu. The plot number is displayed on the left side of the Y-axis of a plot. See
Figure 64.

If “None” is selected, the plot for the data of the command or input will not appear.

 FB/Output Plot Number 7.1.1.2.2

The FB/Input Plot Number determines whether the feedback or output data of an
object as shown in the Object Acronym column is plotted. It also assigns the number
or name of the plot window to the plotted attribute.

The plot window number, or window name (section 7.1.2.2) is selected from the scroll-
down menu. The plot number is displayed on the left side of the Y-axis of a plot. See
Figure 64.

If “None” is selected, the plot for the data of the feedback or output will not appear.

Figure 63 is an example of assigning plot numbers. In this example,
1. The value of the Cmd/Input Plot Number is “1”
2. The value of the FB/Output Plot Number is “2”
Figure 64 demonstrates the plot results.

Page | 139

Figure 64 - Multiple Plots in Edit Data Source Window

7.1.2 Settings

Figure 65 shows the Settings menu in the Trend Plot window. With the Settings menu, a user
can do the following:

1. Select Show Lines by checking the box for this option.
2. Select Show Shapes by checking the box for this option
3. Define trending start and end time by clicking the Trend Plot Window command. See

section 7.1.2.1 for details.
4. Edit individual plot settings including plot names, auto scale options, y-axis bases and

ranges (see sections 7.1.2.2, 7.1.2.3, 7.1.2.4 and 7.1.2.5).

Page | 140

Figure 65 - Settings Menu in the Trend Plot Window

7.1.2.1 Start Time/Date and End Time/Date

To define the start date/time and end date/time
1. Click the Trend Plot Window command as show in Figure 65 to open the Object

Trend Plot Window (Figure 66).
2. To set the plot start date

 Click the calendar icon to open the calendar (Figure 67)

 Select the plot start date

 Click Ok to confirm the selection or Cancel to void the selection
3. To set the plot end date, open the end date calendar and follow the same steps

as those for setting the plot start date.

Figure 66 - Object Trend Plot Window

Page | 141

Figure 67 - Start Date Calendar

4. To set the plot start/end time

 Click the time icon to open the time selector (Figure 68)

 Select the plot start/end time

 Click Ok to confirm the selection or Cancel to void the selection

Figure 68 - Time Selector window

7.1.2.2 Plot Name

A trend plot window can plot up to four plots. Each plot can have a user defined name.
The name can be assigned in the Plot Data Settings window as shown in Figure 69. The
default name of each plot is the same as its plot number.

To give the plot name of a plot:
1. Open the Settings menu.
2. Click Edit Individual Plot Settings (Figure 65) to open the Plot Data Settings

window (Figure 69).
3. Click the cell in the Plot Name column in which you want to assign a name
4. Type in the plot name. In Figure 69, the name of Plot 1 is “Testing” which is

displayed on the left side of the y-axis.
5. Click a cell other than the one with the just typed plot name
6. Click Ok to save the plot name change or Cancel to void the plot name change

Page | 142

Figure 69 - Plot Data Settings Window

7.1.2.3 Auto Scale

If the AutoScale option box is checked (Figure 69), the y-axis scale will be automatically
scaled based on the maximum value of the data. Otherwise, the user needs to define the
Y-Axis Base and Y-Axis Range of the plot.

7.1.2.4 Y-Axis Base

If not using AutoScale option for the plot, use Y-Axis Base to determine the origin of the Y-
Axis.

To define the origin of the Y-Axis of a plot:
1. Open the Plot Data Setting window (section 7.1.2.2)
2. Click the cell in the Y-Base column
3. Type in the value for the origin of the Y-Axis (Figure 69)
4. Click any other cell
5. Click Ok to save the value change or Cancel to void the change

7.1.2.5 Y-Axis Range

If not using AutoScale option for the plot, use Y-Axis Range to determine the plot range of
the Y-Axis.

To define the Y-Axis range of a plot, take similar steps to inputting the Y-Axis Base. See
section 7.1.2.4 for details.

Plot Name

Page | 143

7.1.3 Window

The Window menu contains the Exit menu item. If chosen, the Trend Plot window gets
closed, releasing resources.

7.1.4 Pop-up Menu in the Trend Plot window

Right-click on any portion of the plot area to open the pop-up menu indicated in Figure 70.

Figure 70 - Pop-up menu in the Trend Plot window

7.1.4.1 Properties

Click Properties in the pop-up menu to open the Chart Properties window as shown in
Figure 71. Then you can select the plot properties such as the title, font, color, tick
settings, etc.

 Title Tab 7.1.4.1.1

 Figure 71 shows the function of the Title tab.

1. Check the Show Title option to display the plot title on the top of the plot.

2. Click the Select buttons to define the title font and color.

Pop-up menu

Page | 144

Figure 71 - Title tab in the Chart Properties window

 Plot Tab 7.1.4.1.2

Click the Plot tab to specify the Domain Axis (X-Axis) properties displayed in Figure 72.

To set the plot appearance properties, click the Appearance tab. The functions of the
Appearance tab are shown in Figure 73.

Page | 145

Figure 72 - Plot tab in the Chart Properties window

Figure 73 - Appearance tab in the Chart Properties window

 Other Tab 7.1.4.1.3

The functions under the Other tab are shown in Figure 74.

Page | 146

Figure 74 - Other tab in the Chart Properties window

7.1.4.2 Copy

The Copy command places the chart in clipboard memory. It can be pasted then in a user
document.

7.1.4.3 Save as

The Save As command is used to save the selected plot to a file. To save the plot to a PNG
file:

1. Click Save As PNG
2. Find or create the folder to store the file
3. Type the file name
4. Click Save to save the file or Cancel to not save the file (Figure 75).

Figure 75 - File Save window

7.1.4.4 Print

The Print command is used to print the plot.

7.1.4.5 Zoom In

Take the following steps to enlarge the plot:
1. Click Zoom In (Figure 76)
2. Click Both Axes to zoom in on the X and Y-axis
3. Or click Domain Axis to zoom in on the X-axis
4. Or click Range Axis to zoom in on the Y-axis

Page | 147

Figure 76 - Zoom In

7.1.4.6 Zoom Out

Take the following steps to zoom out of the plot:
1. Click Zoom Out (Figure 77)
2. Click Both Axes to zoom out of both axes
3. Or click Domain Axis to zoom out of the X-axis
4. Or click Range Axis to zoom out of the Y-axis

Figure 77 - Zoom Out

7.1.4.7 Auto Range

Take the following steps to automatically set up the range of the plot:
1. Click Auto Range (Figure 78)
2. Click Both Axes to automatically set up the ranges of both axes
3. Or click Domain Axis to automatically set up the ranges of the X-axis
4. Or click Range Axis to automatically set up the ranges of the Y-axis

Page | 148

Figure 78 - Auto Range

7.2 Real Time Plot

Real-Time Plot (Figure 79) will graph the data from an object or objects in real time. The start
time of the plot is the moment that the Real Time Plot menu item is clicked. A set of old data is
discarded after the predetermined time interval has passed and a new set of real time data
starts to display.

Figure 79 - Real Time Plot

7.2.1 Data Sources

There are two commands in the Data Source menu:
1. Add Data Source
2. Edit Data Source

7.2.1.1 Add Data Source

Data of more than one object can be plotted.

Page | 149

Click on Add Data Source, an EMCS Object Select Dialog window pop up (Figure 62). To
add the object data to be displayed in the Real Time Plot window:

1. Type the object acronym
2. Click OK button to confirm the selection, or Cancel button to void the selection

7.2.1.2 Edit Data Source

The Real Time Plot window can display the following attributes of an object:
1. Command or input value
2. Feedback or output value

Users can select the attribute or attributes to be plotted. The data of different attributes
are plotted in different sub-windows. The Edit Data Source window is used to allocate the
data to the selected sub-window. See section 7.1.2.1, 7.1.2.2 for details.

 Cmd/Input Plot Number 7.2.1.2.1

The Cmd/Input Plot Number determines whether the command or input data of an
object as shown in the Object Acronym column is plotted. It also assigns the number
or name of the plot window of the plotted attribute.

The plot window number, or window name (section 7.2.2.3) is selected from the scroll-
down menu. The plot number is displayed on the left side of the Y-axis of a plot. See
Figure 64.

If “None” is selected, the plot for the data of the command or input will not appear.

 FB/Output Plot Number 7.2.1.2.2

The FB/Input Plot Number determines whether the feedback or output data of an
object as shown in the Object Acronym column are plotted. It also assigns the number
or name of the plot window of the plotted attribute.

The plot window number, or window name (section 7.2.2.3) is selected from the scroll-
down menu. The plot number is displayed on the left side of the Y-axis of a plot. See
Figure 64.

If “None” is selected, the plot for the data of the feedback or output will not appear.

7.2.2 Settings

Figure 80 shows the Settings menu in the Real Time Plot window. In the Settings menu, a
user can do the following:

1. Select Show Lines by checking the box for this option
2. Select Show Shapes by checking the box for this option
3. Define the trending interval of real time data displayed in the window by clicking

AutoRefresh Time to open the input window. See section 7.2.2.1 for details.
4. Define the time interval needed to discard the old data and start to plot the new

data by clicking Real Time Plot Window and opening an input window. See section
7.2.2.2

5. Edit individual plot settings including plot names, auto scale options, y-axis bases,
and ranges (Sections 7.2.2.3, 7.2.2.4, 7.2.2.5 and 7.2.2.6).

Page | 150

Figure 80 - Settings menu in the Real Time Plot window

7.2.2.1 Auto Refresh Time

The Auto Refresh Time command is used to define the next moment to refresh the value
of the object.

To define the Auto Refresh Time:
1. Select an object or several objects for the real time plot in the Grid Display

window
2. Right click the selected object or objects
3. Click Real Time Plot
4. Click Settings
5. Click Auto Refresh Time to open the AutoRefresh Time window (Figure 81)
6. Input the time interval in seconds and click OK button

Figure 81 - AutoRefresh Time window

7.2.2.2 Real Time Plot Window Data Purge Time

Use the Real Time Plot Window to define the data purge time in the real time plot
window.

To define the data purge time:

Page | 151

1. Select an object or several objects for the real time plot in the Grid Display
window

2. Right click the selected object or objects
3. Click Real Time Plot
4. Click Settings
5. Click Real Time Plot Window (Figure 82)
6. Input the time interval in minutes and click OK button

Figure 82 -Real Time Plot Window

7.2.2.3 Plot Name

A Real Time Plot window can plot up to four plots. Each plot can have a user defined
name. The name can be assigned in the Plot Data Settings window as shown in Figure 69.
The default name of each plot is the same as its plot number.

To give the plot name of a plot:
1. Open the Settings menu.
2. Click Edit Individual Plot Settings (Figure 65) to open the Plot Data Settings

window (Figure 69).
3. Click the cell in the Plot Name column which you want to assign a name
4. Type in the plot name. In Figure 69, the name of Plot 1 is “Testing” which is

displayed on the left side of the y-axis.
5. Click a cell other than the one with the just typed plot name
6. Click Ok to save the plot name change or Cancel to void the plot name change

7.2.2.4 Auto Scale

If the AutoScale option box is checked (Figure 69), the y-axis scale will be automatically
scaled based on the maximum value of the data. Otherwise, the user needs to define the
Y-Axis Base and Y-Axis Range of the plot.

7.2.2.5 Y-Axis Base

If not using AutoScale option for the plot, use Y-Axis Base to determine the origin of the Y-
Axis.

To define the origin of the Y-Axis of a plot:
1. Open the Plot Data Setting window (section 7.2.2.3)
2. Click the cell in the Y-Base column
3. Type in the value for the origin of the Y-Axis (Figure 69)
4. Click any other cell
5. Click Ok to save the value change or Cancel to void the change

Page | 152

7.2.2.6 Y-Axis Range

If not using the AutoScale option for the plot, use the Y-Axis Range to determine the plot
range of the Y-Axis.

To define the Y-Axis range of a plot, take similar steps to input the Y-Axis Base. See
section 7.2.2.5 for details.

7.2.3 Window

The Window menu contains the Exit menu item. If chosen, the Real Time Plot window gets
closed, releasing resources.

7.3 History Plot

The History Plot function allows users to graph data from a history object or multiple history
objects.

To display data in the History Plot window:
1. Right click the selected history object or history objects in the Grid Display window. A

pop-up menu appears.
2. Click the History Plot command in the pop-up menu (Figure 83).

3. Fill in Date/Time information in History Date/Time Selector window (Figure 84) and click
Ok button

Figure 83- History Plot in the Grid Display window

Page | 153

Figure 84: History Date/Time Selector window

Figure 85- History Plot window

7.3.1 Data Sources

There are two commands in the Data Source menu:

1. Add Data Source
2. Edit Data Source

7.3.1.1 Add Data Source

Data of more than one object can be plotted.
Click on Add Data Source to open the EMCS Object Selector Dialog window (Figure 86).
Add the object data to be displayed in the History Plot window:

1. Type the object acronym
2. Click the OK button to confirm the selection, or the Cancel button to void the

selection

Page | 154

Figure 86 - EMCS Object Selector Dialog

7.3.1.2 Edit Data Source

The History Plot window can display the following attributes of an object:
1. Command or input value
2. Feedback or output value

 Cmd/Input Plot Number 7.3.1.2.1

The Cmd/Input Plot Number determines whether the command or input data of an
object as shown in the Object Acronym column is plotted. It also assigns the number
or name of the plot window if the attribute will be plotted.

If “None” is selected, the plot for the data of the command or input will not appear.

 FB/Output Plot Number 7.3.1.2.2

The FB/Input Plot Number determines whether the feedback or output data of an
object as shown in the Object Acronym column are plotted. It also assigns the number
or name of the plot window if the attribute will be plotted.

If “None” is selected, the plot for the data of the feedback or output will not appear.

7.3.2 Settings

Figure 87 shows the Settings menu in the History Plot window. Using the Settings menu, a
user can do the following:

1. Select Show Lines by checking the box for this option.
2. Select Show Shapes by checking the box for this option
3. Define history plot start and end date/time settings by clicking the History Plot

Window command.
4. Edit individual plot settings including plot names, auto scale options, y-axis bases and

ranges.

Page | 155

Figure 87 - Settings menu in the History Plot window

7.3.2.1 Start Time/Date and End Time/Date

To define the start date/time and end date/time
1. Click the History Plot Window command as show in Figure 87 to open the Object

History Plot Window (Figure 88).
2. To set the plot start date

 Click the calendar icon to open the calendar (Figure 89)

 Select the plot start date

 Click Ok to confirm the selection or Cancel to void the selection
3. To set the plot end date, open the end date calendar and follow the same steps

as those for setting the plot start date.

Figure 88 - Object History Plot Window

Page | 156

Figure 89 - Start Date calendar

4. To set the plot start/end time

 Click the time icon to open the time selector (Figure 90)

 Select the plot start/end time

 Click Ok to confirm the selection or Cancel to void the selection

Figure 90 - Time Selector window

7.3.2.2 Plot Data Settings

Plot Data Settings functionality is similar to the one described for Trend Plot in sections
7.1.2.2, 7.1.2.3, 7.1.2.4 and 7.1.2.5

7.3.3 Window

The Window menu contains the Exit menu item. If chosen, the History Plot window gets
closed, releasing resources.

8 History

After a History object is created (section 3.9), the archived data can be acquired using the Get
Archive Data command under the pop-up menu of the Grid Display, or by using the toolbar. The
data can be viewed in the Archive Data window and saved as a file.

8.1 Get Archive Data

To get the archive data from the Grid Display window:

1. Highlight the History object
2. Right click the selected object
3. Click Get Archive Data from the pop-up menu to open the Archive Data window as

shown in Figure 91
4. Click the Start date/time icons to set the start date and time of the historic data
5. Click the End date/time icons to set the end date and time of the historic data

Page | 157

6. Click Get Data at the bottom to display the archive data
7. Click Save to Disk to save the data to a comma-separated value text file. The file can

be opened with a text editor or spreadsheet program.

Figure 91 – History Archive Data Window

Get the archive data by clicking the toolbar (Figure 4). A window similar to Figure 91 appears.
The only difference is the user needs to type in the acronym of an alarm or history object.

8.2 Save Multiple Histories

To save multiple histories from the Grid Display window:

1. Highlight one or several History objects
2. Right click the selected object(s)
3. Click Save Multiple Histories from the pop-up menu to open the Save History

window as shown in Figure 92
4. Click the Start date/time icons to set the start date and time of the historic data
5. Click the End date/time icons to set the end date and time of the historic data
6. Click Ok at the bottom to open the File Selector window.
7. Give a name and click Save to save the data to a file.

Figure 92- Save History Window

9 Text Messaging

The Text Messaging function provides a way for EMCS system users to communicate. A text
message is input in the Text Messaging window as shown in Figure 93.

To open the Text Messaging window, click Messaging in the Forms menu (Figure 2), or click the
Messaging toolbar (Figure 4).

Page | 158

Figure 93 - Text Messaging window

9.1 Refresh User List and Select User

Click the Refresh User List button at the bottom right to refresh the Online Users list at the top
right.

Click the user in the online user list to highlight and select the user.

9.2 Type Message

Type messages in the space at the bottom of the messaging window.

9.3 Send Message

Select the message recipient from the online user list at the top right; and click Send at the
bottom right of the Text Messaging window (Figure 93) to send the message.

9.4 Read Message

A user can read received messages from the Text Messaging window (Figure 93).

10 Access Control (Admin Only)

Access control determines which users are allowed to log on the system. Permission is granted to
specific users to determine what they can control after logging into Digi-SFT.

Page | 159

A user account is set up in the Object Definition window (section 3.11). A user is identified by the
user name. To log in the system, a password is also required, which is also entered in the Object
Definition window.

When defining a user object (section 3.11), a user may be assigned to a predefined user group
(section 10.1). The permissions of a user are determined by the group to which the user belongs.

The permissions of a group are granted in group definition (section 10.1). Only an administrator
level user can assign the rights of a user group (section 10.2).

A user group’s rights may enable users to engage in as little as none to all of the following actions:

 Read

 Control

 Modify_OBJ

 Delete_OBJ

 Edit_CBK

 Create_OBJ

10.1 User Groups

User can be assigned to different groups. The group can be used for access control by assigning
different privileges to the group.

To create a new group, edit or delete an existing group:
1. Click Groups in the Forms menu (Figure 2),or click the Groups toolbar (Figure 4) to open

the User Groups window
2. Highlight a group
3. Right click the highlighted group to open a pop-up menu
4. Click the corresponding command to edit, delete, create new or create similar group
5. Click Refresh list on the top left corner of the window to update the User Groups

window

6. Click Close in the bottom to dispose the User Groups window.

Figure 94 - User Groups window

10.1.1 Group Name

The user group is identified by Group Name. The name is an alpha-numeric string of up to 32
characters.

The group name can be created or edited in the Group Definition window as shown in Figure
95.

Page | 160

To modify the group name, click the View/Edit Group command in the pop-up menu (Figure
94).

To create a new group, click either Create Similar Group or Create New Group in the pop-up
menu (Figure 94).

When using Create Similar Group, a new group that has similar attributes to the highlighted
existing group can be created. This function provides an easy way to create similar groups
but the attributes of the new group can still be modified. When using Create New Group, the
empty Group Definition window appears, and all necessary information defining the new
group is input from scratch. Figure 95 indicates the new Group Definition window.

Figure 95 - New Group Definition window

10.1.2 Group Description

Group Description is an optional field to describe the user group. Up to 200 characters can be
used in the description.

10.1.3 Acronym

The acronym here is a filter to control which objects are accessible for group members. Two
signs have special meaning here:

1. %: this stands for 0 or more occurrences of any letter. e.g., a single “%” in Building means
any objects, whereas “RTU%” for System means all objects having System starting with
“RTU”, such as “RTU”, “RTU1”.

2. |: this stands for OR relationship between its left and right part. e.g., “RTU%|VAV%” in
System means objects that having RTU or VAV as starting characters in System field.

Note: the four parts of an acronym combine in AND relationship, meaning an object will have
to meet all four fields to be selected as accessible to group member.

10.1.4 Group Permission

The privilege options for a group include Read, Modify, Edit CB, Control, Create, and Delete.

Check the box in front of an option to give the permission to the group.

Page | 161

10.2 Administrator

Only an administrator has the privilege to access, create, edit, and delete the user groups. A
non-administrator user cannot view the Group menu and toolbar.

To classify a user to an administrator use the User Object Definition window (Figure 32). An
existing administrator level user can define a user as an administrator. Non-administrator level
users cannot change themselves into administrator level users.

11 Check Dependencies

A control block may represent a dependency on other objects if they are referenced in the control
block code. Digi-SFT will not allow deletion of any referenced object where such dependencies
exist. When an object is highlighted, check dependencies will list the objects upon which the
selected object has a dependency.

To check the dependency of an EMCS object:
1. Highlight the object in the Grid display
2. Right click the object to open the pop-up menu (Figure 96)
3. Click Check Dependencies to open the Dependency List window (Figure 97)

Therefore, before an EMCS object is deleted, all the objects displayed in Dependency List should be
deleted first.

Figure 96 - Check Dependencies

Page | 162

Figure 97 - Dependency List window

12 Batch Process Commands

This section introduces how to use Batch Process Commands in the Grid Display window.

Figure 98 - Batch Process Commands

Page | 163

Batch Process Commands groups batch commands to manage controller, hardware, and control
blocks. Those commands include (Figure 98):

1. Set Selected HW online (section 12.1)
2. Set Selected HW offline (section 12.2)
3. Initialize Selected Controllers (section 12.3)
4. Reset Selected Controllers (section 12.4)
5. Compile Selected CBs (section 12.5)

12.1 Set Selected HW Online

Deprecated. This action will take no effect. The controller is always online.

12.2 Set Selected HW Offline

Deprecated. This action will take no effect. The controller is always online.

12.3 Initialize Selected Controllers

You may initialize controllers (hardware objects) using this command by first selecting one or
more controllers then choose Initialize Selected Controllers from the pop-up menu.

When a controller is initialized, all EMCS objects will be discarded from the controller. This is
immediately followed by a download of all controller resident objects currently defined in the
database to the controller. Once all objects are downloaded, the controller resumes operation.

The controllers will be initialized one at a time and their initialization status will appear in a
batch process results window.

An error window will appear if no controllers are selected.

Follow the steps below to initialize a controller:

1. Click a cell for a controller in the Grid Display window to select that controller
2. Right click to open a pop-up menu
3. Click Batch Process Commands (Figure 98)
4. Click Initialize Selected Controllers to open a message window (Figure 99)
5. Click Yes to initialize the controller; or No to cancel the operation
6. If click Yes, the Batch Process results window similar to shows the results of the

execution.

Figure 99 - Initialize Selected Controller message window

12.4 Reset Selected Controllers

Use Reset Selected Controllers command to reboot the controllers.

Follow the steps below to reset a controller:

Page | 164

1. Click a cell for a controller in the Grid Display window to select that controller
2. Right click to open a pop-up menu
3. Click Batch Process Commands (Figure 98)
4. Click Reset Selected Controllers to open a message window similar to Figure 99
5. Click Yes to Reset controllers; or No to cancel the operation
6. If click Yes, the Batch Process results window similar to shows the results of the

execution.

12.5 Compile Control Blocks (Admin Only)

You may compile control blocks using this command by first selecting one or more control
blocks then choose Compile Selected CBs from the pop-up menu. If successful, it will be
downloaded to the appropriate hardware platform and run.

The control blocks will be compiled one at a time and their compilation status will appear in a
batch process results window.

An error window will appear if no control blocks are selected.

Follow the steps below to reset a controller:

1. Click a cell for a control block in the Grid Display window to select the CB
2. Right click to open a pop-up menu
3. Click Batch Process Commands (Figure 98)
4. Click Compile Selected CBs to open a message window
5. Click Yes to compile the CB; or No to cancel the operation
6. If click Yes, the Batch Process results window similar to shows the results of the

execution.

13 Settings

The Settings option is used to change specific Digi-SFT settings.

Each time one or more of the available settings gets changed the application needs to be restarted
in order to apply the new settings. This will be performed automatically when the user clicks the
Save button.

Click Session menu; and then click Settings (Figure 1) to open the Settings window as shown in
Figure 100. Or use the Settings toolbar (Figure 4) to open the same window.

Page | 165

Figure 100 - Settings window

13.1 Style

The “Look and Feel” of the Java user interface can be changed. Available Look and Feels are:
Windows, Windows Classic, CDE/Motif, Nimbus and Metal as shown in Figure 101.

Figure 101 - Look and Feel

13.2 Logging Level

The logging level of the information logged in the log file can be set by selecting a value from the
available ones in the Logging Level drop down (Figure 102).

The higher the selected level is the fewer details get logged in. In order to not use significant
processing time for logging at run-time, the user is recommended to use ERROR setting. In case

Page | 166

a defect is submitted that cannot be easily recreated on a test system, the user can clear the log
file, set the Logging Level to DEBUG, run the scenario that recreates the defect and provide the
log file to Bes-Tech engineers in order to help finding the cause of the problem.

Figure 102 - Logging Level

13.3 Language

Digi-SFT supports the following languages: English and Chinese (simplified). The user interface
language can be changed by updating this setting (Figure 103).

User’s Guide document is also provided in the above listed languages.

Figure 103 - Language

Page | 167

13.4 Default Graphic

User can set up a graphic object to be opened as default behavior after a successful login. To
enable this feature, check this box, and in Grid View, right click on any Graphic object and select
“Set as Default”.

Figure 104 - Default Graphic

13.5 VPN Client

If VPN is needed, user can store VPN authentication information in settings. Digi-SFT Client will
use this to automatically connect to VPN before connecting to a Digi-SFT Server.
If our pre-defined VPN login strategy doesn’t cover In situ VPN method. User can choose the
“None/Manual” option. This requires users select a path for VPN software exactable file, and
user can click Launch to immediately run that program, or check “Launch at Start up” to let Digi-
SFT Client invoke that program after automatically after start up.

Page | 168

Figure 105 – Setting VPN support

Page | 169

14 Appendix

14.1 DCL Keywords

 Language
Keywords

Reference Section Name Reference
Section
Number

AI Object Variable Types 4.2.4
and Logical Operators 4.4.3
AO Object Variable Types 4.2.4
bool Primitive Variable Types 4.2.3
break break Statement 4.6.8
case switch-case Statement 4.6.6
CB Object Variable Types 4.2.4
continue continue Statement 4.6.9
Date Time and Data Functions 4.5.4
default switch-case Statement 4.6.6
DI Object Variable Types 4.2.4
DO Object Variable Types 4.2.4
do while and do-while Statement 4.6.5
else If-else Statement 4.6.3
float Primitive Variable Types 4.2.3
extern External Variables 4.2.7
for for Statement 4.6.4
HIST HIST Objects 4.2.9.7
HW HW Objects 4.2.9.9
if If-else Statement 4.6.3
input Input/Output Variables 4.2.8
int Primitive Variable Types 4.2.3
LOOP CB and LOOP Objects 4.2.9.6
or Logical Operators 4.4.3
output Input/Output Variables 4.2.8
return return Statement 4.6.10
stop stop Statement 4.6.7
time Time Expressions 4.5.3
while while and do-while Statement 4.6.5

Page | 170

14.2 DCL Variable Usage Summary

The following table summarizes where and how the different variable types may be declared and used in DCL.

Variable
Type

Math
Op’s

Logical
Op’s

Global
Scope

Function
Scope

External
Variable
(1)

Pass-by-
Value to
Function

Pass-by-
Reference
to Function

Assigned a
Return Value
from Function

float Y Y Y Y Y Y Y Y
int Y Y Y Y Y Y Y Y
bool N Y Y Y Y Y Y Y
time N Y Y Y Y Y Y Y
date N Y Y Y Y Y Y Y
object N N Y N N N Y N
float array Y N(2) Y Y N N Y N
int array Y N(2) Y Y N N Y N
bool array N N(2) Y Y N N Y N
time array N N(2) Y Y N N Y N
date array N N(2) Y Y N N Y N
object array N N Y N N N Y N

Table Notes:

1. Local scope external variables are not allowed. All external variables must be declared with global scope (i.e., they must be declared
at the beginning of a DCL file outside of any functions).

2. Logical operations can be performed on individual array elements but not entire arrays themselves.

Page | 171

14.3 DCL EMCS Constants

14.3.1 Control Block and LOOP State

Constant Description

STATE_ACTIVE This constant defines the active state for a control block or loop. See
section 4.1.1 for more information about control block states.

STATE_DEACTIVE This constant defines the deactivate state for a control block or loop.
See section 4.1.1 for more information about control block states.

STATE_RESTARTED This constant defines the restarted state for a control block. See
section 4.1.1 for more information about control block states.

STATE_RESUMED This constant defines the resumed state for a control block or loop.
See section 4.1.1 for more information about control block states.

STATE_SHUTDOWN This constant defines the shutdown state for a control block or loop.
See section 4.1.1 for more information about control block states.

STATE_STOPPED This constant defines the stopped state for a control block. See
section 4.1.1 for more information about control block states.

14.3.2 Lock/Key

Constant Description

LK_HIGH This constant defines the second highest level of privilege for the lock
and key function. See section 3.12 for more about lock and key.

LK_LOCKOUT This constant defines the highest level of privilege for the lock and key
function. See section 3.12 for more about lock and key.

LK_MED This constant defines the second lowest level of privilege for the lock
and key function. See section 3.12 for more about lock and key.

LK_NORMAL This constant defines the lowest level of privilege for the lock and key
function. See section 3.12 for more about lock and key.

14.3.3 Report Severity

Constant Description

SEVERITY_HIGH This constant defines the second highest level of report severity.

SEVERITY_LIFE_SAFETY This constant defines the highest level of report severity.

SEVERITY_LOW This constant defines the lowest level of report severity.

SEVERITY_MEDIUM This constant defines the second lowest level of report severity.

Page | 172

14.3.4 Status

Constant Description

STATUS_ALLOW_ACCESS

STATUS_AMBIENT_ENTHALPY

STATUS_AMBIENT_REL_HUM

STATUS_AMBIENT_TEMP

STATUS_CHILLED_WATER_PRESSURE

STATUS_CHILLED_WATER_TEMP

STATUS_COLDEST_TEMP

STATUS_DAY_TYPE

STATUS_DECON Decontamination.

STATUS_DECON_ABORT Decontamination is aborted.

STATUS_DECON_DEHUM Decontamination with dehumidification.

STATUS_DENY_ACCESS

STATUS_DISABLE_NOTIFICATION

STATUS_EMERGENCY_ALARM User hit “emergency” flow button on fume hood
monitor.

STATUS_ENABLE_NOTIFICATION

STATUS_EQUIPMENT_FAILURE

STATUS_FAILED_TO_CLOSE Object failed to close.

STATUS_FAILED_TO_OPEN Object failed to open.

STATUS_FAILED_TO_START

STATUS_FILLING

STATUS_FLOW_ALARM Fume hood flow is out of tolerance (i.e., too high or too
low)

STATUS_FORCED_OPEN

STATUS_HARDWARE_LOCKED

STATUS_HARDWARE_UNLOCKED

STATUS_HELD_OPEN

STATUS_HICLAMP

STATUS_INITIALIZED

STATUS_INVALID_COMMAND_VALUE

Page | 173

Constant Description

STATUS_INVALID_CV

STATUS_ INVALID_MV

STATUS_ INVALID_READING

STATUS_ INVALID_STATE

STATUS_LINE_OPEN

STATUS_LINE_SHORT

STATUS_LOCALLY_MODIFIED Controller or other resident objects were locally
modified by technician.

STATUS_LOCLAMP

STATUS_NOT_INITIALIZED

STATUS_NO_DATA Scribe has not received any new values for a period of
time.

STATUS_NO_SCODE

STATUS_OLD_PROTOCOL

STATUS_OPERATION_MODE

STATUS_POWERUP

STATUS_PROGRAMMING

STATUS_ PROGRAMMING_FAILURE

STATUS_READY

STATUS_RESET

STATUS_STARTED

STATUS_STEAM_PRESSURE

STATUS_VALIDATING_CREDENTIAL

STATUS_WAITING

STATUS_WAITING_ON_KEYPAD

STATUS_WAITING_ON_READER

14.3.5 Undefined Primitives

Constant Description

UNDEFINED_DATE The value of this constant represents an undefined date.

Page | 174

Constant Description

UNDEFINED_FLOAT The value of this constant represents an undefined floating point
number. For example, to ignore an undefined floating point number in
an array:

for(i = 0; i < arraySize(x[]); i = i + 1)
{
 if(x[i]==UNDEFINED_FLOAT) {continue;}
 xSum=xSum+x[i];
 countX++;
}

UNDEFINED_INT The value of this constant represents an undefined integer number.

UNDEFINED_BOOL The value of this constant represents an undefined Boolean.

UNDEFINED_TIME The value of this constant represents an undefined time.

14.3.6 User Settable Status

Constant Description

STATUS_CYCLE_PUMPS

STATUS_DAY

STATUS_DEADBAND

STATUS_DEADBAND_NO_REHEAT

STATUS_DEFROST

STATUS_EXTERNAL_RESET

STATUS_HIGH_SPEED

STATUS_INTERNAL_RESET

STATUS_LOW_SPEED

STATUS_MANUAL

STATUS_MANUAL_OVERRIDE

STATUS_NIGHT

STATUS_NORMAL

STATUS_NORMAL_NO_REHEAT

STATUS_NULL_POINT

STATUS_OCCSENS

STATUS_OFF

STATUS_ON

STATUS_RUN_BOTH_PUMPS

Page | 175

Constant Description

STATUS_RUN_PUMP1

STATUS_RUN_PUMP2

STATUS_STAFF_HOLIDAY

STATUS_STUDENT_HOLIDAY

STATUS_SUMMER_DEADBAND

STATUS_SUMMER_NORMAL

STATUS_TEMP_OCCUPIED

STATUS_UNOCC

STATUS_WINTER_DEADBAND

STATUS_WINTER_NORMAL

STATUS_WINTER_SHUTDOWN

Example code for using DCL EMCS status constants:

activate()
{
 // Get default values and set status to normal
 defaultValues();
 setStatus(STATUS_NORMAL);
 report(0, "");
}
deactivate()
{ setStatus(STATUS_OFF); }

shutdown()
{ setStatus(STATUS_OFF); }

14.4 DCL Coding Standards

14.4.1 Introduction

Coding standards and conventions are necessary for the following reasons:

 Portability and Reuse. Code that is written once is more likely to be used again.

 Consistency and Neatness.

 Maintainability.

 Clarity.

 Productivity.

14.4.2 Basic Principals

 Keep the code simple. It is better to have a number of CB’s and functions that do one
thing clearly and well, rather than one “super” CB or function that attempts to do
everything.

 Be explicit. Say what you mean.

Page | 176

 Be consistent. Use the same rules as much as possible.

 Keep the spirit of the standards. Where you have a coding decision to make and there is
no direct standard, then you should always keep within the spirit of the standards.

 Avoid complicated statements. Statements comprising many decision points are hard to
follow.

 Updating old code. Whenever existing code is modified try to update the document to
abide with the conventions outlined in this document. This will ensure that old code will
be upgraded over time.

14.4.3 Source Files

Use of TAB character
The standard indent level should be 4 spaces. This insures that any DCL source file can be
consistently displayed in any kind of text editor.

CB File Documentation
At the beginning of each file, include a comment block which is formatted as the following
example.

/*
*** CB
FULL NAME: [BUILDING.SYSTEM.SUBSYSTEM.NAME]
* PROGRAMMER(s): Joe Programmer (JP)
* CREATED DATE: MM/DD/YYYY
* DESCRIPTION: This CB accomplishes the following tasks: ...
*
* INPUT: cooling set point
* OUTPUT: heating set point
*
* ACTIVATED BY: temp changes
* CONTROLS: heating
*
* CHANGE LOG:
* DATE WHO DESCRIPTION
* --
* 7/02/2012 K.C. Added super feature
* 1/15/2015 L.A. Fixed Bug
***/

DCL File Layout
DCL CB source files should be organized in the following manner:

 File documentation (previous section)

 Global variable declarations

 Any non-reserved user defined functions

 activate() function

 resume() function

 main() function

 deactivate() function

 shutdown() function

Note that not all of the above elements will necessarily be present in every DCL file.

Page | 177

14.4.4 Commenting

Keep code and comments visually separate.

Comments should be inserted using either of the following styles:

1. Comments Along Side Code.

float fTempValue; // Current EU value of temp sensor
int iCount; // Current counts
bool bFlag; // Calculation complete flag

As can be seen, this is most often most appropriate when commenting variable declarations.

2. Comments Above Code

// Loop through array and perform CRC calculation
for(i = 0; i <= MAX – 1; i++)
update(a[i]);

// Put array into data buffer
bufferWrite(a[], value);

Be sure to include a blank line between non-related comments as in the example.

Multi-line comments.

Avoid the following comment style:

/* This type of comment can lead to confusion especially when
describing a function like clkUpdateTime(). The function looks
like actual code! */

Instead, use the either of the following methods

// This is much better because
// there is a comment symbol
// which starts each line.

/* This is much better because
* even though there is not a
* comment symbol on each line,
* there is an asterisk which
* starts each line.
*/

User Defined Function Comments

Every user defined function should have a comment section preceding the function
definition. The suggested layout of this section is shown by the following example.

/*

FUNCTION NAME: pidLoop
*
* DESCRIPTION: Implements PID control algorithm.
*
* ARGUMENTS: msrdVar = AI input
* cntrdVar = AO output

Page | 178

* k[] = Array of P, I, and D constants
*
* RETURNS: Current output between 0 and 100
*
* NOTES: Moves controlled var value to appropriate
* position.
***/
float pidLoop(float msrdVar, float &cntrdVar, float k[])
{

// Function definition
} // End pidLoop

14.4.5 Variable and Function Naming Conventions

Variable and function names should be descriptive so that their purpose is clear.

Capitalization

Use a lower case letter for the first letter of a non-constant variable or function. Then,
capitalize each successive word. Examples include:

ductPressure
maxInternalTemp
roomTemp
damperPosition

Use standard acronyms, abbreviations and mnemonics consistently.

The following are from the “Acronyms, Abbreviation and Mnemonics (AAM) Dictionary.”

Argument Arg
Buffer Buf
Clear Clr
Clock Clk
Compare Cmp
Configuration Cfg
Context Ctx
Delay Dly
Device Dev
Disable Dis
Display Disp
Enable En
Error Err
Function Fnct
Hexadecimal Hex
Initialize Init
Manager Mgr
Manual Man
Maximum Max
Message Msg
Minimum Min
Multiplex Mux
Overflow Ovf
Parameter Param

Page | 179

Previous Prev
Priority Prio
Read Rd
Ready Rdy
Register Reg
Schedule Sched
Synchronize Sync
Timer Tmr
Trigger Trig
Write Wr

14.4.6 Code Layout

Only have one action per line of code

pressure = 12.5;
doneFlag = TRUE;

Instead of:

pressure = 12.5; doneFlag = TRUE;

Spacing
Write array subscript operators without spaces around them.

a[i]
movingAverage[12]

Parenthesis after function names have no spaces before them.

startup();

At least one space is needed after each comma to separate function parameters in function
definitions and arguments in function calls.

// Function definition
int startup(float maxValue, int count)
{

// startup code
}

// Function call
nightSetBack(LOOP L[], float setBackTemp);

At least one space is needed after each semicolon in a for loop.

for (i = 1; i <= n; i++)

Binary operators are written with at least one space between them and their operands.

c1 = c2;
x + y
i += 2;
n > 0 ? n : -n;
a < b
c >= 2

Page | 180

Unary operators are written with no space between them and their operand.

++i
!ready
j—

The keywords if, while, for, and return are followed by one space.

if (a > b)
while (x > 0)
for (i = 0; i < 10; i++)
return (y);

Expressions within parentheses are written with no space after the opening parenthesis and
no space before the closing parenthesis.

x = (a + b) * c;

Bracing Style
The suggested DCL bracing style is easier to illustrate by examples than to describe.

if (x > 0)
{

y = 10;
z = 5;

} // End if
else
{

if (z < LIM)
{

x = y + z;
z = 10;

} // End if
else
{

x = y – z;
}

} // End else

Note that this approach makes it easy to ensure that every opening brace has a
corresponding closing brace. Also, indentation clarifies what is within a particular statement
and what is not.

14.5 Example DCL Code

14.5.1 Time Scheduler

This DCL example schedules two different air handling systems.

/*
**
* CB FULL NAME: [CLASSROOM.AH.UNIT.SCHEDULER]
* PROGRAMMER: Joe Programmer (JP)
* CREATED: 10/10/2014
* DESCRIPTION: This CB schedules the classroom air handling
* units. It uses external boolean variables to indicate whether * a
particular AHU should run. Other CB’s monitor these

Page | 181

* externals and act accordingly.
*
* INPUT: schedule intervals
* OUTPUT: air handling units run state
*
* ACTIVATED BY: time changes
* CONTROLS: air handling units
*
* CHANGE LOG:
* DATE WHO DESCRIPTION
*---
*
***/

extern bool ah1Run, ah2Run; // External
time BEGIN = 7:0:0; // Constant
time NOON = 12:0:0; // Constant
time QUIT = 19:0:0; // Constant

main()
{

while(TRUE)
{

switch
{

// Note that break statements are not necessary
// since case statements are mutually exclusive
case mon()
{

ah1Run = BEGIN -> QUIT;
ah2Run = BEGIN -> NOON;

}
case tue()
{

ah1Run = BEGIN -> QUIT;
ah2Run = BEGIN -> NOON;

}
case wed()
{

// Evening Classes!
ah1Run = BEGIN -> QUIT;
ah2Run = (BEGIN -> NOON) or

(19:0:0 -> 22:0:0);
}
case thu()
{

// Evening Classes!
ah1Run = BEGIN -> QUIT;
ah2Run = (BEGIN -> NOON) or

(19:0:0 -> 22:0:0);
}
case fri()
{

ah1Run = BEGIN -> QUIT;
ah2Run = BEGIN -> NOON;

}

Page | 182

case sat()
{

ah1Run = NOON -> QUIT;
ah2Run = FALSE;

}
case sun()
{

ah1Run = 10:0:0 -> 14:0:0;
ah2Run = NOON -> QUIT;

}
} // End switch
// Delay 1 minute between day / time check
delay(60);

} // End while
} // End main

15 Glossary

A Alarm

An object that provides an audible or visual warning of a problem or condition.

 Analog

Data that has continuous values in both time and amplitude to represent information.

Analog Input

An object that provides a continuous signal from a sensor.

Analog Input Module

A device that receives an analog signal, usually from a sensor, and converts and sends a Digital
signal, usually to a controller.

Analog Output

An object that provides a continuous signal sent to an actuator.

Analog Output Module

A device that receives a Digital signal, usually from a controller, and converts and sends an
analog signal, usually to an actuator.

B BAS

Building automation system.

C Client

A computer that accesses a remote computer system, known as a server.

Control block

An object that is a computer program written in a domain specific programming language.

D Digital

Data that uses discrete or discontinuous values to represent information.

Digital Input

Page | 183

An object that provides a discrete signal from a switch or limit device.

Digital Output

An object that provides a discrete signal sent to an on/off device.

Distributed Control System

A control system in which the controller elements are distributed throughout the system with
each component controlled by one or more controllers.

E EMCS

An Energy Management Control System provides the comfort control of a traditional HVAC
system with the additional constraint of minimizing energy consumption.

Ethernet

Computer networking technology for local area networks.

F

G Graphic

An object that is an interactive illustration that can be used to display real-time information of
any part of the system and can control output devices in the system.

H Hardware

An object that represents a piece of hardware, such as

 Field computer

 Multiplexor

 PMC/PMC2

 Server

History

An object that offers a data acquisition mechanism that requires programming a control block
and is used to save user defined variables at a programmable data acquisition rate.

HVAC

Heating, ventilation, and air conditioning.

I

J

K Key

The key value is one of four values: normal, medium, high, and lock-out that can be assigned to
an object to control other objects, such as control blocks and users. An object can control the
controllable object when the key value is greater than or equal to the lock value.

L Lock

The lock value is one of four values: normal, medium, high, and lock-out. It can be assigned to
controllable objects, such as analog outputs, control blocks, Digital outputs, and loops.

Loop

Page | 184

An object that provides proportional, integral, derivative (PID) control.

M

N

O Object

An object is an individual element of Digi-SFT system, including:

 Alarm

 Analog input

 Analog output

 Control block

 Digital input

 Digital output

 Graphic

 Hardware

 History

 Loop

 Schedule

 User

Object Identifier

Three part numbering scheme that uniquely identifies objects with a top, middle, and bottom
that is assigned by the system based on the type of object being created and where the object
resides. The following convention is used for the object identifier:

 Top – represents a particular field computer or user.

 Middle – represents a controller or field computer process.

 Bottom – represents a specific object on the controller or a specific object managed by
a field computer process.

P Points

Input/output objects, such as

 Analog input

 Analog output

 Digital input

 Digital output

Q

R RS-232

Standard for serial binary data signals.

 RS-485 (EIA-485)

A standard that specifies a two-wire, half-duplex, multipoint serial connection.

S Schedule

An object that allows you to define what time events occur and on what days, such as

Page | 185

weekdays, weekends, and holidays.

SQL

Structured Query Language is a language designed for relational database management
systems.

 Server

A computer dedicated to running software that services requests over a network connection.

Setpoint

The desired value for an automatic control system.

Smart Actuator

An actuator that receives a Digital command signal, usually from a controller.

Smart Sensor

A sensor that sends a Digital signal, usually to a controller.

T Trend

A term used to describe data acquired and saved. There are two types of trending, automatic
and history. The automatic trending will save the standard predefined output variable for any
object at a periodic acquisition rate. The history object requires programming a control block
and is used to save user defined variables at a programmable data acquisition rate.

U User

An object that defines an individual’s account settings.

V VAV

Variable Air Volume is a method of controlling an HVAC system that uses a varying amount of air
volume.

W Workstation

Any terminal or personal computer connected to a network.

X

Y

Z

Index
Alarms

Object Definition Window, 24
Analog Input

Field Information Window, 40
Object Definition Window, 39

Analog Output

Field Information Window, 43

Object Definition Window, 41
Control Blocks

Field Information Window, 29
Object Definition Window, 26
States, 67
Status, 70

DCL editor, 112

Page | 186

Digital Input

Field Information Window, 46
Object Definition Window, 45

Digital Output

Field Information Window, 49
Object Definition Window, 48

Display sequence, 17

Generic Schedule

Field Information Window, 60
Object Definition Window, 59

Graphics

Object Definition Window, 31
Graphics Editor

Composer, 129
Map Network Drive, 130
Prototypes, 131

graphics viewer, 13

grid display, 15

Hardware

Field Information Window, 35
Object Definition Window, 32

History

Object Definition Window, 57
Logical Operators

!, not, 93
and, 93
or, 93

Loops

Field Information Window, 54
Object Definition Window, 51

Object identifier, 17

Objects

AI, analog input, 74
alarm, 74
AO, analog output, 74
CB, control block, 74
DI, digital input, 74
DO, digital output, 74
HW, hardware, 74

Report, 16

State, 16

Statements

break, 101
continue, 101
for, 98
if-else, 98
return, 101
stop, 100
switch-case, 99
while and do-while, 99

Status, 16

tree display, 11

Users

Object Definition Window, 62
Variable Type

bool, 74
date, 74
float, 74
integer, 74
time, 74

